

How to Identify Class Comment Types? A Multi-language Approach for Class Comment Classification

<u>Pooja Rani</u>, Sebastiano Panichella, Manuel Leuenberger, Andrea Di Sorbo, Oscar Nierstrasz

UNIVERSITÄT BERN

 $u^{^{\scriptscriptstyle b}}$

b UNIVERSITÄT BERN

NIVERSITÄT ERN

Motivation

```
/**
 A class representing a window on the screen.
 For example:
 <
     Window win = new Window(parent);
     win.show();
 @author Sami Shaio
 @version 1.13, 06/08/06
 @see java.awt.BaseWindow
* /
class Window extends BaseWindow {
}
```

Trustworthy form of documentation

- McMillan et al. 2010

High-quality code comments assist developers

Problem

```
/**
* A class representing a window on the screen.
* For example:
* 
     Window win = new Window(parent);
     win.show();
 * @author Sami Shaio
* @version 1.13, 06/08/06
* @see java.awt.BaseWindow
* /
class Window extends BaseWindow {
}
```

Does this comment contain any warning/example?

No standard definition of comments

No strict syntax and structure conventions

Lack of quality assessment tools

No standard definition of comments

No strict syntax and structure conventions

Lack of quality assessment tools

No standard definition of comments

No strict syntax and structure conventions

Lack of quality assessment tools

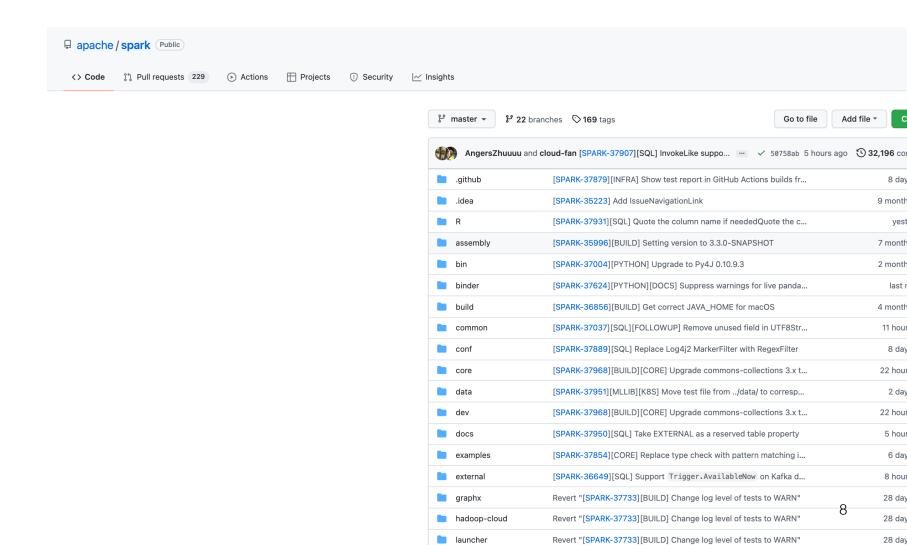
No standard definition of comments

No strict syntax and structure conventions

Lack of quality assessment tools

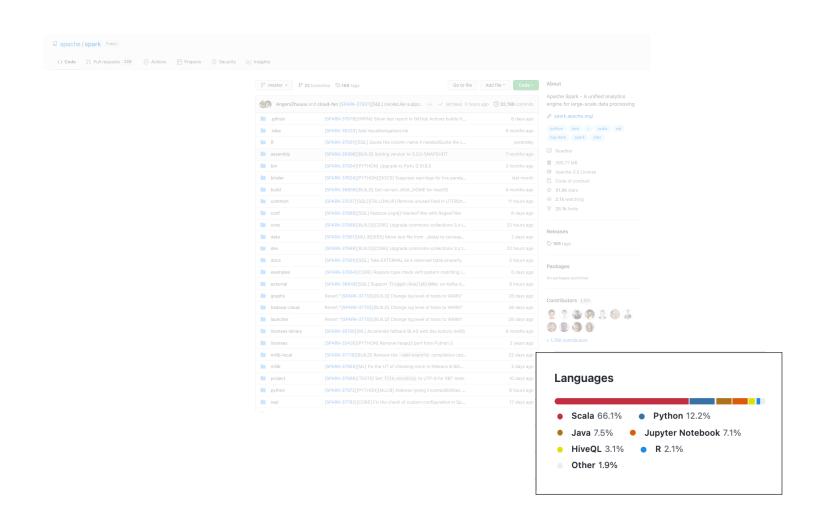
Makes information identification a non-trivial problem

Increasing multi-language environments

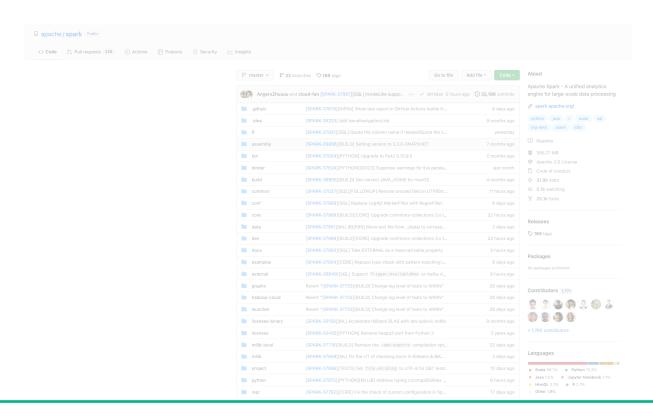


[CDARK 35150][MI] Appelorate followsk BLAS with day ludging patib

Increasing multi-language environments



Increasing multi-language environments



97% of open-source projects used two or more programming languages

- Tomassetti et al. 2014

Each language has its own conventions to write comments

Given the increasing use of multi-language environments, we need a deeper understanding of developer commenting practices across languages

Given the increasing use of multi-language environments, we need a deeper understanding of developer commenting practices across languages

RQ1: What types of information are present in class comments? To what extent do information types vary across programming languages?

Information types in comments

```
/**
 A class representing a window on the screen.
class Window extends BaseWindow {
```

Summary

Information types in comments

```
For example:
 Usage
     Window win = new Window(parent);
    win.show();
 class Window extends BaseWindow {
```

RQ1: What types of information are present in class comments?

Java, Python, Smalltalk, **20 projects**

Extract class comments, 37, 446 comments

Classify sample comments,1,066 comments

Output: a taxonomy, and a classifier

Comment taxonomies in languages

Pascarella et al., 2017

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

Classifying code comments in Java open-source software systems

Luca Pascarella

Delft University of Technology
Delft, The Netherlands
L.Pascarella@tudelft.nl

Alberto Bacchelli Delft University of Technology Delft, The Netherlands A.Bacchelli@tudelft.nl

Abstract—Code comments are a key software component containing information about the underlying implementation seek related to the seek related to the read-ability of the code. Nevertheless, not all the comments that the same goal and target audience. In this paper, we investigate the same goal and target audience. In this paper, we investigate aim of understanding their purpose. Through our analysis, we produce a taxonomy of source code comments; subsequently, we investigate how often each category occur by manually classifying more than 2000 code comments from the aforemation projects. In addition, we conduct an initial evaluation on how automatically deadly code comments at the level into our automatically deadly code comments at the level into our automatically deadly code comments at the level into our automatically deadly code comments at the level into our automatically deadly code comments at the level into our automatically deadly code comments at the level into our automatically deadly code comments are the contract of the comment of the comments are consistent of the comment of the commen

I. Introduction

While writing and reading source code, software engineers

Haouari et al. [11] and Steidl et al. [28] presented the earliest and most significant results in comments' classification, heatonat et al. investigated developers' commenting bails, occasing on the position of comments with respect to source code below the proposed of the position of comments with respect to source code level categories III. It Stell et al. proposed a semi-automated approach for the quantitative and qualitative evaluation of comment quality, based on classifying comments in seven high-level categories [28]. In spite of the innovative techniques they proposed to both understanding developers' commenting habits and assessing comments' quality, the classification of comments was not in their primary focus.

In this paper, we focus on increasing our empirical understanding of the types of comments that developers write in source code files. This is a key step to guide future research

Rani et al., 2021

Smalltalk

Zhang et. al., 2018

Python

Classifying Python Code Comments Based on Supervised Learning

Jingyi Zhang¹, Lei Xu^{2(⊠)}, and Yanhui Li²

- School of Management and Engineering, Nanjing University, Nanjing, Jiangsu, China jyzhangchn@outlook.com
- Department of Computer Science and Technology, Nanjing University, Nanjing, Jiangsu, China {xlei,yanhuili}@nju.edu.cn

Abstract. Code comments can provide a great data source for understanding programmer's needs and underlying implementation. Previous work has illustrated that code comments enhance the reliability and maintainability of the code, and engineers use them to interpret their code as well as help other developers understand the code intention better. In this paper, we studied comments from 7 python open source projects and contrived a taxonomy through an iterative process. To clarify comments characteristics, we deploy an effective and automated approach using supervised learning algorithms to classify code comments according to their different intentions. With our study, we find that there does exist a pattern across different python projects: Summary covers about 75% of comments. Finally, we conduct an evaluation on the behaviors of two different supervised learning classifiers and find that Decision Tree classifier is more effective on accuracy and runtime than Naive Bayes classifier in our research.

Pascarella et al., 2017

Rani et al., 2021

Smalltalk

Zhang et. al., 2018

Python

Java

Intent

Summary

Expand

Pointer

Key Messages

Rationale

Usage

Deprecation

Unmapped

Under Development Ownership

License

Autogenerated

Directive

Formatter

Incomplete

Noise

Todo

Commented code

Exception

Responsibility

Collaborators

Key Implementation Point ■

Warnings

Examples |

Class References

Instance Variables _

ReferenceToOtherResource

Preconditions _

Recommedation _

Subclasses Explanation _

Links _

Other _

License/Copyright _

Extension _

Observation _

Discourse _

Dependencies

Todo _

Coding Guidelines _

 $^{'}$ Unmapped $_{-}$

Summary

Expand

Links

Development Notes

Usage

Unmapped

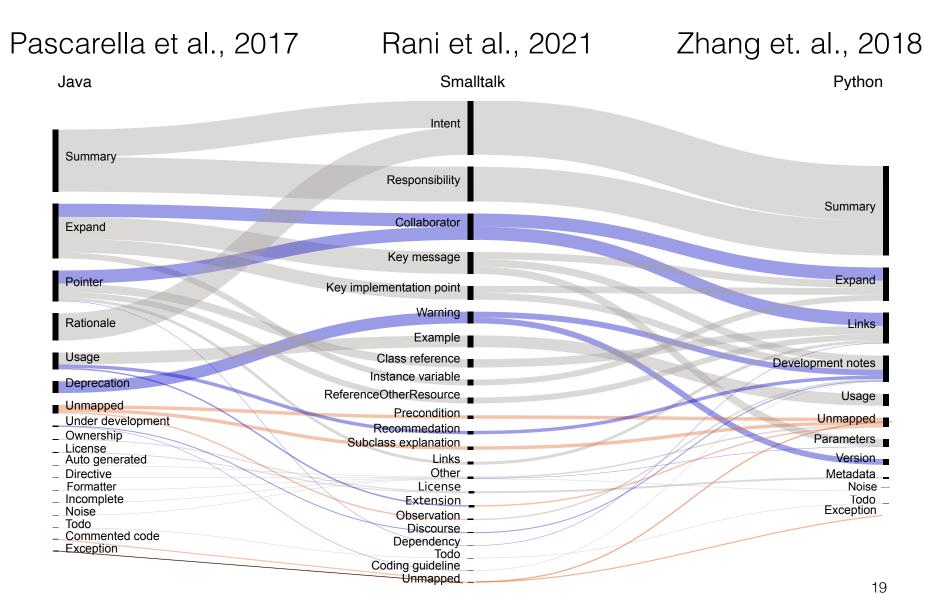
Parameters =

Version

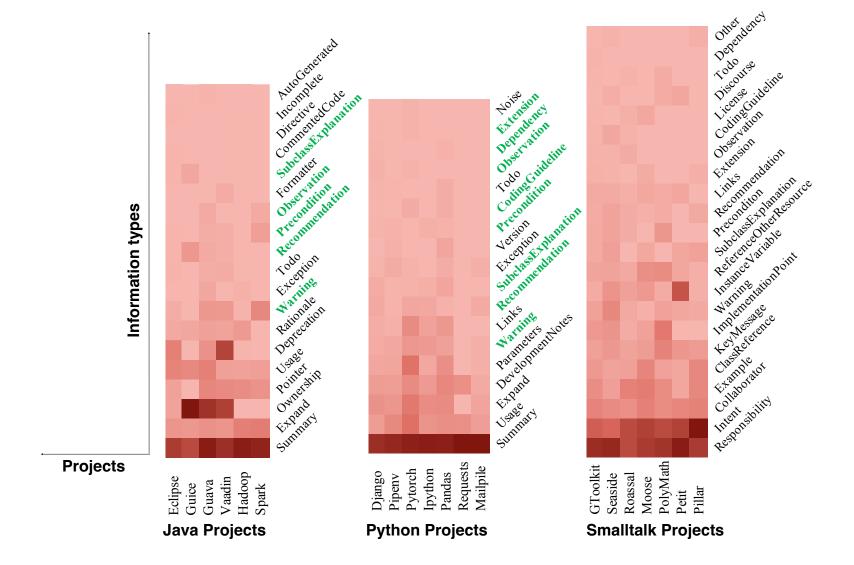
Metadata _

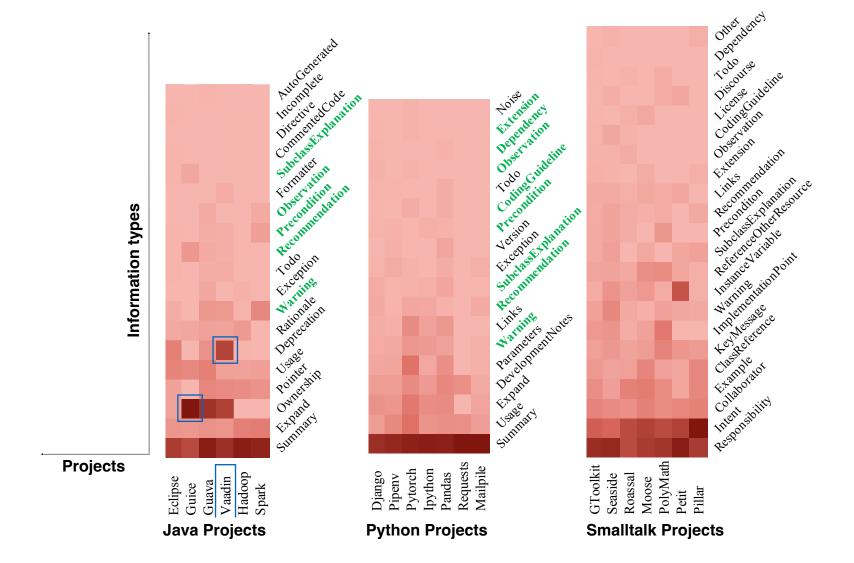
Noise _

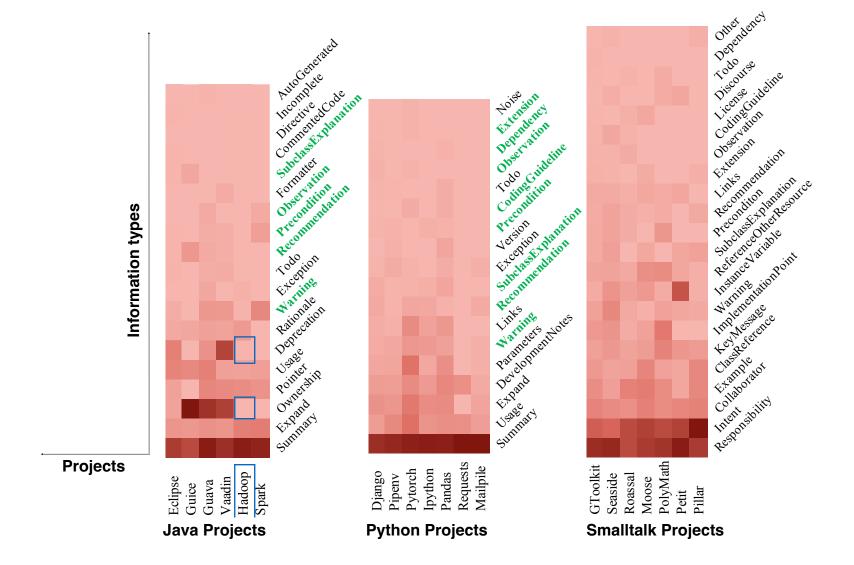
Todo _ Exception



CCTM (Class Comment Types Model)







Given the increasing use of multi-language environment, we need a deeper understanding of developer commenting practices across languages

RQ1: What types of information are present in class comments? To what extent do information types vary across programming languages?

RQ2: Can machine learning be used to automatically identify class comment types according to CCTM?

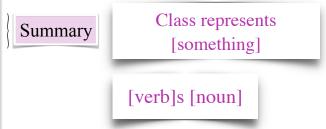
```
/**
 A class representing a window on the screen.
                                                   Summary
class Window extends BaseWindow {
```

Class represents
[something]

[verb]s [noun]

Recurrent natural language patterns exist in various information types

```
/**
  A class representing a window on the screen.
class Window extends BaseWindow {
```



How do we extract such patterns?

Extract patterns

 To automatically identify textual patterns in informal software documents, intention mining can be used.

 Di Sorbo et al., developed a tool, **NEON**, to detect natural language patterns. 2015 30th IEEE/ACM International Conference on Automated Software Engineering

Development Emails Content Analyzer: Intention Mining in Developer Discussions

2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)

An NLP-based Tool for Software Artifacts Analysis

Andrea Di Sorbo*, Corrado A. Visaggio*, Massimiliano Di Penta*, Gerardo Canfora*, Sebastiano Panichella† "University of Sannio, Italy †Zurich University of Applied Sciences, Switzerland {disorbo, visaggio, dipenta, canfora} @winsanio,it, panc@zhaw.ch

Abstract-Software developers rely on various repositories and communication channels to exchange relevant information about their ongoing tasks and the status of overall project progress. facts have been leveraged by researchers to build recommender systems aimed at supporting developers in different tasks, such as transforming user feedback in maintenance and evolution tasks, suggesting experts, or generating software documentation. More specifically, Natural Language (NL) parsing techniques have been successfully leveraged to automatically identify (or extract) the relevant information embedded in unstructured software artifacts. However, such techniques require the manual identification of patterns to be used for classification purposes. To reduce such a manual effort, we propose an NL parsingbased tool for software artifacts analysis named NEON that can automate the mining of such rules, minimizing the manual effort of developers and researchers. Through a small study involving human subjects with NL processing and parsing expertise, we assess the performance of NEON in identifying rules useful to classify app reviews for software maintenance purposes. Our results show that more than one-third of the rules inferred by NEON are relevant for the proposed task.

Demo webpage: https://github.com/adisorbo/NEON_tool
Index Terms—Unstructured Data Mining, Natural Language
Parsing, Software maintenance and evolution

I. Introduction

Software developers intensively rely on of software repositories [1], [9], [29] and written communication channels [7], [24] for exchanging relevant information about the ongoing development tasks and the status of overall project progress. word (or, in the best case, infer latent topics/concepts from them). This makes them ineffective when a deeper level of detail in the text analysis and interpretation is needed [16]– [18]

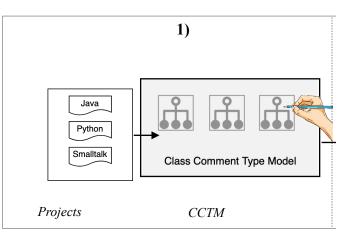
To overcome the limitations of approaches based on bagoft-words representations, and to automatically identify textual patterns in informal software documents that are relevant to different evolution tasks, in previous work we proposed an approach named intention mining [16], which leverages Natural Language (NL) parsing techniques. Such an approach has been successfully applied for classification [17], [25], [27], summarization [15], [28], or quality assessment [11], [32] purposes, where it turned out to be more accurate than models based on bag-of-words representations.

The main challenge of leveraging approaches based on NL parsing techniques is that they require the manual definition of sets of NL rules [15], [16], [25] to recognize natural language patterns. This manual task has proven to be effort-intensive and error-prone, since it requires specific domain-knowledge in natural language parsing [18]. For this reason, recent research [19] attempted to automate and generalize intention mining by experimenting with deep learning-based methods. However, while deep learning-based approaches avoid the manual tagging of textual information, they hampers the interpretability of the results, making it difficult to understand the specific linguistic patterns that have been identified. Such patterns are indeed crucial to support several tasks, e.g.,

Example patterns from summary

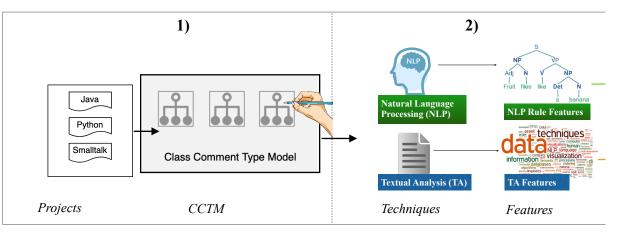
```
/**
                                                  Summary
                                                                     Class represents
*A class representing a window on the
                                                                       [something]
 screen.
*For example:
                                          <NLP heuristic>
                                             <sentence type="declarative"/>
* 
                                             <type>nsubj/dobj</type>
*Window win = new Window(parent)
                                             <text>Class represents [something].</text>
                                              <conditions>
*win.show();
                                                 <condition>nsubj.governor="represent"</condition>
* 
                                                 <condition>nsubj.dependent="class"</condition>
                                                 <condition>nsubj.governor=dobj.governor</condition>
                                              </conditions>
*@author Sami Shaio
                                             <sentence class>summary</sentence class>
                                          </NLP heuristic>
*@version 1.13, 06/08/06
*@see java.awt.BaseWindow
*/
class Window extends BaseWindow{
```

Automatic identification of information types



Ground truth: 1,066 classified comments

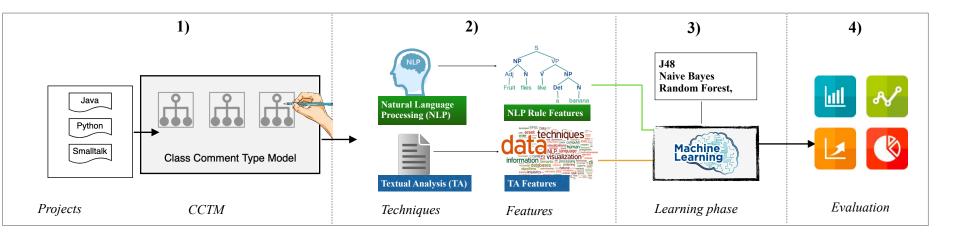
Automatic identification of information types



Ground truth: 1,066 classified comments

Features: recurrent NL patterns + text features

Automatic identification of information types

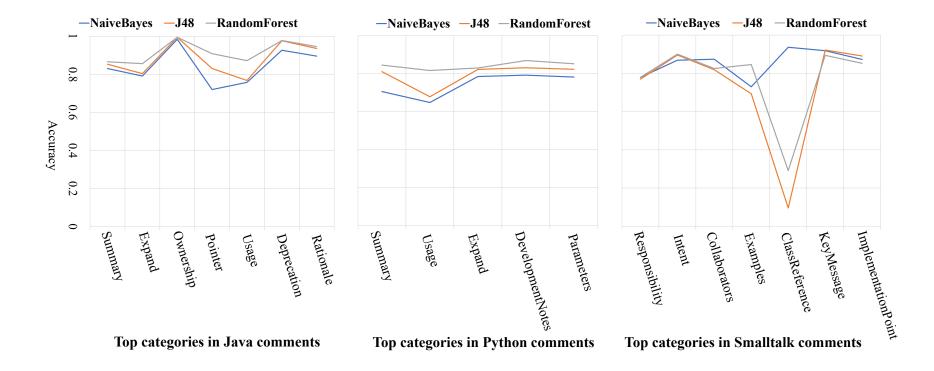


Ground truth: 1,066 classified comments

Features: recurrent NL patterns + text features

Supervised ML algorithms

Results



Random Forest technique classifies comments better

The ultimate goal of automatically assessing comments is still far away...

Future work

Which information types do developers find important?

How do various information types support developers?

What quality attributes are important for comments?

An IDE plugin to support automatic assessment of comments.

How to Identify Class Comment Types? A Multi-language Approach for Class Comment Classification

Paper

https://www.sciencedirect.com/science/article/pii/S0164121221001448

Replication Package on GitHub

https://github.com/poojaruhal/RP-class-comment-classification.

YouTube

https://www.youtube.com/watch?v= auMqCsxg0s

Summary

