k The Journal of and
SOFTWARE

SANER 2022 Journal First

UNIVERSITAT

How to Identify Class Comment Types? -
A Multi-language Approach for Class zh
Comment Classification

IIIIIIIIIII

Pooja Rani, Sebastiano Panichella, Manuel S’c';‘if‘é{ff@
Leuenberger, Andrea Di Sorbo, Oscar Nierstrasz L

b
IIIIIIIIIII

Motivation

J/**

* A class representing a window on the screen.
*

* For example:

* <pre>

* Window win = new Window(parent);
* win.show();

* </pre>

*

* @author Sami Shaio

* @version 1.13, 06/08/06

*

@see java.awt.BaseWindow
* /

class Window extends BaseWindow {

}

S

Trustworthy form of documentation

- McMillan et al. 2010

High-quality code comments assist developers

- Dekel et al. 2009 2

Problem

/**

A class representing a window on the screen.

For example:

<pre>
Window win = new Window(parent);
win.show();

</pre>

@author Sami Shaio
@version 1.13, 06/08/06
@see java.awt.BaseWindow

/

class Window extends BaseWindow {

* ok % ok F % ok F X ok ¥ %

Does this
comment contain any
warning/example?

Challenges

No standard definition of comments

No strict syntax and structure conventions

Lack of quality assessment tools

Challenges

No standard definition of comments

No strict syntax and structure conventions

Lack of quality assessment tools

Challenges

No standard definition of comments
No strict syntax and structure conventions

Lack of quality assessment tools

Challenges

No standard definition of comments
No strict syntax and structure conventions

Lack of quality assessment tools

Makes information identification a non-trivial problem

Increasing multi-language environments

| apache [spark Public

<> Code 19 Pull requests 229 (® Actions [Projects @ Security |~ Insights

¥ master ~ ¥ 22 branches ©169 tags Go to file Add file ~

AngersZhuuuu and cloud-fan [SPARK-37907][SQL] InvokeLike suppo... - +/ 50758ab 5 hours ago & 32,196 col

@

.github [SPARK-37879][INFRA] Show test report in GitHub Actions builds fr... 8 day
.idea [SPARK-35223] Add IssueNavigationLink 9 montt
R [SPARK-37931][SQL] Quote the column name if neededQuote the c... yest
assembly [SPARK-35996][BUILD] Setting version to 3.3.0-SNAPSHOT 7 month
bin [SPARK-37004][PYTHON] Upgrade to Py4J 0.10.9.3 2 month
binder [SPARK-37624][PYTHON][DOCS] Suppress warnings for live panda... lastr
build [SPARK-36856][BUILD] Get correct JAVA_HOME for macOS 4 montkt
common [SPARK-37037][SQL][FOLLOWUP] Remove unused field in UTF8Str... 11 hour
conf [SPARK-37889][SQL] Replace Log4j2 MarkerFilter with RegexFilter 8 day
core [SPARK-37968][BUILD][CORE] Upgrade commons-collections 3.x t... 22 houl
data [SPARK-37951][MLLIB][K8S] Move test file from ../data/ to corresp... 2 day
dev [SPARK-37968][BUILD][CORE] Upgrade commons-collections 3.x t... 22 houl
docs [SPARK-37950][SQL] Take EXTERNAL as a reserved table property 5 hour
examples [SPARK-37854][CORE] Replace type check with pattern matching i... 6 day
external [SPARK-36649][SQL] Support Trigger.AvailableNow on Kafka d... 8 houl
graphx Revert "[SPARK-37733][BUILD] Change log level of tests to WARN" 28 day
hadoop-cloud Revert "[SPARK-37733][BUILD] Change log level of tests to WARN" 28 day

launcher Revert "[SPARK-37733][BUILD] Change log level of tests to WARN" 28 day

LBrancae _Winars TCDADWK 2ACE1ENIIAML Y Ar~nrcalarata falllhanl BRI AC with Aav hidAvie matlilk Q manth

Increasing multi-language environments

Languages

.| | | [
® Scala 66.1% ® Python 12.2%
® Java75% ® Jupyter Notebook 7.1%
HiveQL 3.1% ® R21%
Other 1.9%

Increasing multi-language environments

97% of open-source projects used two or more programming languages

- Tomassetti et al. 2014

Each language has its own conventions to write comments

10

Given the increasing use of multi-language environments,
we need a deeper understanding of developer
commenting practices across languages

11

RQ1: What types of information are present in class comments?
To what extent do information types vary across programming languages?

12

Information types in comments

J**
* A class representing a window on the screen. |
. 3 Summary

13

Information types in comments

|

% Usage

For example:

<pre>
Window win = new Window(parent);
win.show();

</pre>

* % % % % X

14

RQ1: What types of information are present in class comments?

Java, Python, Smalltalk,
20 projects

Extract class comments,
37,446 comments

Classify sample comments,
1, 066 comments

Output: a taxonomy, and a classifier

15

Comment taxonomies in languages £23

16

Java

Pascarella et al., 2017

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

Classifying code comments
in Java open-source software systems

Luca Pascarella
Delft University of Technology
Delft, The Netherlands
L Pascarella@tudelft.nl

Abstract—Code comments are a Key software component
containing information about the underlying implementation.
tudies have shown that code comments enhance the
readability of the code. Nevertheless, not all the comments have
the same goal and target audience. In this paper, we investigate
how six diverse Java OSS projects use code comments, with the
aim of understanding their purpose. Through our analysis, we
produce a taxonomy of source code comments; subsequently, we
investigate how often each category occur by manually classify-
ing more than 2,000 code comments from the aforementioned
projects. In addition, we conduct an ini
to automatically cl code
taxonomy using machine learning; initial results are promising
and suggest that an accurate classification is within reach.

L. INTRODUCTION
‘While writing and reading source code, software engineers

Alberto Bacchelli
Delft University of Technology
Delft, The Netherlands
ABacchelli @tudelftnl

Haouari ef al. [11] and Steidl ef al. [28] presented the ear-
liest and most significant results in comments’ classification,
Haouari ef al. investigated developers’ commenting habits, fo-
cusing on the position of comments with respect to source code
and proposing an initial taxonomy that includes four high-
level categories [11]; Steidl et al. proposed a semi-automated
approach for the quantitative and qualitative evaluation of
comment quality, based on classifying comments in seven
high-level categories [28]. In spite of the innovative techniques
they proposed to both understanding developers’ commenting
habits and assessing comments’ quality, the classification of
comments was not in their primary focus.

In this paper, we focus on increasing our empirical under-
standing of the types of comments that developers write in

cnena nda filae Thic e o b

tan tn mnida

conrrh

ani et al., 2021

Smalltalk

Empirical Software Engineering (2021) 26: 112
https/doi org/10.1007/51064-021-09981-5

Chodk for
Upaaios

What do class tellus? Ani g
of comment evolution and practices in Pharo Smalltalk

Pooja Rani'© - Sebastiano Panichella? - Manuel Leuenberger' - Mohammad Ghafari® -
Oscar Nierstrasz'

Accepted: 25 May 2021 Published online: 18 August 2021
©The Author(s) 2021

Abstract

Context Previous studies have characterized code comments in various programming lan-
guages, showing how high quality of code comments is crucial to support program com-
prehension activities, and to improve the effectiveness of maintenance tasks. However, very
few studies have focused on understanding developer practices to write comments. None of
them has compared such developer practices to the standard comment guidelines to study
the extent to which developers follow the guidelines.

Objective Therefore, our goal is to investigate developer commenting practices and com-
pare them to the comment guidelines.

Method This paper reports the first empirical study investigating commenting practices
in Pharo Smalltalk. First, we analyze class comment evolution over seven Pharo versions.
Then, we quantitatively and qualitatively investigate the information types embedded in
class comments. Finally, we study the adherence of developer commenting practices to the
official class comment template over Pharo versions.

Results Our results show that there is a rapid increase in class comments in the initial three

ss comments as those suggested by the tem-
plate. However, the information types suggested by the template tend to be present more
often than other types of information. Additionally, we find that a substantial proportion of
comments follow the writing style of the template in writing these information types, but
they are written and formatted in a non-uniform way.

Conclusion The results suggest the need to standardize the commenting guidelines for for-
matting the text, and to provide headers for the different information types to ensure a con-
sistent style and to identify the information casily. Given the importance of high-quality
code comments, we draw numerous implications for developers and to improve
the support for comment quality assessment tools.

Keywords Commenting practices - Class comment analysis - Comment evolution -
Template analysis - Pharo - Program comprehension
Communicated by Andrian Marcus

51 Pooja Rani
pooja.rani @inf.unibe.ch

Extended author information available on the last page of the article

&) Springer

/hang et. al., 2018

Python

Classifying Python Code Comments
Based on Supervised Learning

Jingyi Zhang!, Lei Xu2(®), and Yanhui Li2

* School of Management and Engineering, Nanjing University,
Nanjing, Jiangsu, China,
jyzhangchn@outlook.com

2 Department of Computer Science and Technology, Nanjing University,
Nanjing, Jiangsu, China
{xlei,yanhuili}@nju.edu.cn

Abstract. Code comments can provide a great data source for under-
standing programmer’s needs and underlying implementation. Previous
work has illustrated that code comments enhance the reliability and
maintainability of the code, and engineers use them to interpret their
code as well as help other developers understand the code intention
better. In this paper, we studied comments from 7 python open source
projects and contrived a taxonomy through an iterative process. To clar-
ify comments characteristics, we deploy an effective and automated app-
roach using supervised learning algorithms to classify code comments
according to their different intentions. With our study, we find that
there does exist a pattern across different python projects: Summary
covers about 75% of comments. Finally, we conduct an evaluation on the
behaviors of two different supervised learning classifiers and find that
Decision Tree classifier is more effective on accuracy and runtime than
Naive Bayes classifier in our research.

17

Pascarella et al., 2017

Java

Summary

| Expand

Pointer

Rationale

I Usage

] Deprecation

g Unmapped

— Under Development

— Ownership

_ License

_ Autogenerated

_ Directive

_ Formatter

_ Incomplete

_ Noise

_ Todo

— Commented code
Exception

Intent

Responsibility

Collaborators

Key Messages

Key Implementation Point
Warnings
Examples

Class References

Instance Variables
ReferenceToOtherResource
Preconditions
Recommedation
Subclasses Explanation
Links

Other

License/Copyright

Extension
Observation
Discourse
Dependencies
Todo

Coding Guidelines
Unmapped

Rani et al., 2021

Smalltalk

/hang et. al., 2018

Python

Summary

Expand

Links

Development Notes

Usage
Unmapped
Parameters

Version
Metadata

Noise

Todo
Exception

18

Pascarella et al., 2017

Java

Summary

Expand

Pointer

Rationale

I Usage

j Deprecation —~

g Unmapped
Under development
— Ownership

_ License

Auto generated

_ Directive

_ Formatter

_ Incomplete

_ Noise

_ Todo

_ Commented code
— Exception

Rani et al., 2021

Smalltalk

Intent

Responsibility I

Collaborator I

Key message I

Key implementation point I
Warning 1

Example

Class reference
Instance variable
ReferenceOtherResource

N

~ Precondition .
Recommedation. .
Subclass explanation
b Links =
Other
License
Extension
Observation _
Discourse _
Dependency _
Todo _
Coding-guideline
Unmapped _

CCTM (Class Comment Types Model)

/hang et. al., 2018

Python

Summary

Expand

Links

Development notes

Usage
Unmapped

Parameters

Version
Metadata
Noise

Todo _
Exception

19

Information types

Projects

=
[

23552«
:.._‘cug'céa
Qo 2 3 S a
ROO>Twn

Java Projects

aEZ
Python

o I

python

Pandas

2]
a2
(O~
=2
TS
()

& S

rojects

= ‘Cﬁq
Q‘_‘

T8% 33 .

c 858252

OCwneESAea &

Smalltalk Projects -

Information types

Projects

=
[

23 55|28«
:.._‘cug'céa
Qo 2 3 S a
RO O> T v

Java Projects

aEZ
Python

o I

python

Pandas

2]
a2
(O~
=2
TS
()

& S

rojects

= ‘Cﬁq
Q‘_‘

T8% 33 .

c 858252

OCwneESAea &

Smalltalk Projects o1

Information types

Projects

o

)

ZggE|s

:.._‘cug'céa
Qo 2 3 S |
MmO O > T w

Java Projects

aEZ
Python

o I

python

Pandas

2]
a2
(O~
=2
TS
()

& S

rojects

= ‘Cﬁq
Q‘_‘

T8% 33 .

cE83TES

OCwneESAea &

Smalltalk Projects -

Given the increasing use of multi-language environment,
we need a deeper understanding of developer
commenting practices across languages

RQ1: What types of information are present in class comments? To what extent do information
types vary across programming languages?

RQ2: Can machine learning be used to automatically identify class comment types according
to CCTM?

23

/**
' i | Class represents
* A class representing a window on the screen. . Summary p

* J————— [something]

——

[verb]s [noun]

I ————

Recurrent natural language patterns exist in various information types

24

J **

* A class representing a window on the screen. { Summary Class represents
* [something]

T

[verb]s [noun] '

class Window extends BaseWindow {

25

Extract patterns

* To automatically identify textual
patterns in informal software
documents, intention mining
can be used.

Di Sorbo et al., developed a
tool, NEON, to detect natural
language patterns.

26 Di Sorbo et. al., An NLP-based Tool for Software Artifact Analysis. ICSME 202

2015 30th [EEE/ACM International Conference on Automated Software Engineering

Development Emails Content Analyzer: Intention
Mining in Developer Discussions

2021 IEEE International Conference on Software Mai and ion (ICSME)

An NLP-based Tool for Software Artifacts Analysis

Andrea Di Sorbo*, Corrado A. Visaggio*, Massimiliano Di Penta*,
Gerardo Canfora*, Sebastiano Panichella’
*University of Sannio, Ttaly
Zurich University of Applied Sciences, Switzerland
{disorbo, visaggio, dipenta, canfora} @unisannio.it, panc@zhaw.ch

Ab: Softy rely on various es and
communication channels to exchange relevant information about
their ongoing tasks and the status of overall project progress.
In this context, semi-structured and unstructured software arti-
facts have been leveraged by researchers to build recommender
systems aimed at supporting developers in different tasks, such
as transforming user feedback in maintenance and evolution
tasks, experts, or software
More specifically, Natural Language (NL) parsing techniques
have been successfully leveraged to automatically identify (or
extract) the relevant i ion embedded in
software artifacts. However, such techniques require the manual
identification of patterns to be used for classification purposes.
To reduce such a manual effort, we propose an NL parsing-
based tool for software artifacts analysis named NEON that can
automate the mining of such rules, minimizing the manual effort
of developers and researchers. Through a small study involving
human subjects with NL processing and parsing expertise, we
assess the performance of NEON in identifying rules useful to
classify app reviews for software maintenance purposes. Our
results show that more than one-third of the rules inferred by
NEON are relevant for the proposed task.
Demo webpage: https://github.com/adisorbo/NEON_tool

Index Terms—Unstructured Data Mining, Natural Language
Parsing, Software maintenance and evolution

1. INTRODUCTION
Software developers intensively rely on of software reposi-
tories [1], [9], [29] and written communication channels [7],
[24] for exchanging relevant information about the ongoing
development tasks and the status of overall project progress.

word (or, in the best case, infer latent topics/concepts from
them). This makes them ineffective when a deeper level of
detail in the text analysis and interpretation is needed [16]-
[18].

To overcome the limitations of approaches based on bag-
of-words representations, and to automatically identify textual
patterns in informal software documents that are relevant
to different evolution tasks, in previous work we proposed
an approach named intention mining [16], which leverages
Natural Language (NL) parsing techniques. Such an approach
has been successfully applied for classification [17], [25], [27],
summarization [15), [28], or quality assessment [11], [32]
purposes, where it turned out to be more accurate than models
based on bag-of-words representations.

The main challenge of leveraging approaches based on NL
parsing techniques is that they require the manual definition of
sets of NL rules [15], [16], [25] to recognize natural language
patterns. This manual task has proven to be effort-intensive
and error-prone, since it requires specific domain-knowledge
in natural language parsing [18]. For this reason, recent
rescarch [19] attempted to automate and generalize intention
mining by with deep learning-based methods.
However, while deep learning-based approaches avoid the
manual tagging of textual information, they hampers the
interpretability of the results, making it difficult to understand
the specific linguistic patterns that have been identified. Such
patterns are indeed crucial to support several tasks, e.g.,

Example patterns from summary

J/**
*A class representing a window on the Sulmary Class represents
screen. [something]
L ———
* <NLP_heuristic>

<sentence type="declarative"/>

<type>nsubj/dobj</type>

<text>Class represents [something].</text>

<conditions>
<condition>nsubj.governor="represent'"</condition>
<condition>nsubj.dependent="class"</condition>
<condition>nsubj.governor=dobj.governor</condition>

</conditions>

<sentence_class>summary</sentence_class>

</NLP_heuristic>

class Window extends BaseWindow({

27

Automatic identification of information types

1)

—

2

Class Comment Type Model

N.
Q
M EEE

CCTM

Ground truth: 1,066
classified
comments

28

Automatic identification of information types

1) 2)

s
/\
m NP vp
Am/\N mp
[T P N
Fruit flies i t N

like De

| |
2 banana

NLP Rule Features

3 e

S \

Class Comment Type Model

Projects CCTM Techniques Features
Ground truth: 1,066 Features: recurrent
classified NL patterns + text
comments features

29

Automatic identification of information types

1)

Java

iy

73!

[
»

Class Comment Type Model

Projects

CCTM

S
/\
NP VP
Am/\N v P
[T P N
Fruit flies like Det N

! ara

NLP Rule Features

techniques -

Techniques Features

3)

J48
Naive Bayes
Random Forest,

4)

‘ Maé:iné{" N
Learningl-(

Learning phase

Evaluation

Ground truth: 1,066
classified

30

comments

Features: recurrent
NL patterns + text
features

Supervised ML
algorithms

Results

—NaiveBayes —J48 —RandomForest —NaiveBayes —J48 —RandomForest —NaiveBayes —J48 —RandomForest

s _\\/\ =

80

90

KovInooy
¥0

0

» o O = @ o = O =
£ % 232 ¢ 3z ¢ ¢ 3 % 3 T 2 %2 % 2 % %
3202 2 3z B 2 % 2 %) 2 2 R
2 5 0% 0% &% 3oz % &% %% % s = %5 3 b % ¢
N e S 2 £y S 3 S, %, 5 &% & 3%
3 s © 2 S g = % g & 2

(e} &) » = o} o e S

=) S = 2 [o e

= = (7 2 Z

Z <))

<] =

2 3

» =

. $

Top categories in Java comments Top categories in Python comments Top categories in Smalltalk comments -

Random Forest technique classifies comments better

31

The ultimate goal of automatically assessing
comments is still far away...

32

Future work

Which information types do developers find important?
How do various information types support developers?
What quality attributes are important for comments?

An IDE plugin to support automatic assessment of
comments.

33

How to Identify Class Comment Types? A Multi-language
Approach for Class Comment Classification

Paper
https://www.sciencedirect.com/science/article/pii/S0164121221001448

Replication Package on GitHub

https://qgithub.com/poojaruhal/RP-class-comment-classification.

YouTube
https://www.youtube.com/watch?v=_auMqCsxg0s E

v w

https://twitter.com/poojaruhal http://scqg.unibe.ch/staff/Pooja-Rani

https://twitter.com/poojaruhal
http://scg.unibe.ch/staff/Pooja-Rani
https://www.sciencedirect.com/science/article/pii/S0164121221001448
https://github.com/poojaruhal/RP-class-comment-classification.
https://www.youtube.com/watch?v=_auMqCsxg0s

Summary

Challenges

RQ1: What types of information are present in class comments?

No standard definition of comments Java, Python, Smalltalk,

20 projects

No strict syntax and structure conventions

Extract class comments,
37,446 comments

Lack of quality assessment tools

Classify sample comments,
1,066 comments

Output: a taxonomy, and a classifier

Makes information identification a non-trivial problem

7 16
Automatically identify an information type
Pascarella et al., 2017 Rani et al., 2021 Zhang et. al., 2018
Java Smalltalk Python NaiveBayes M8 RandemFores NabveBayes — J48 RsadomForest NaiveBayes 348 RandomFernst
....I -
‘Summary 2
e |
—
IE,,.,,, eu-—l
— " Kaymesses | .
In_ ey poms g mml 4
1 - £ E 7 g f f
= e = [FIE O O T A B A - |
LUsage — :.:::::' n..m.mm.l i £ - { H £ 4 i i HE! ,-5. i i
- [—— —— o S’ £ § i
hrrr——— Preconaton o — N . H Z
— - e — SE—— :
g = -
i et Node Random Forest technique classifies comments better
e ooaensen. P
Eimertaa code e
E Todo
-
o - » 2
CCTM

35

