Assessing Comment Quality in
Object-Oriented Languages

Pooja Ranl

PhD Defense

SUPErvisors:
Prof. Dr. Oscar Nierstrasz
Dr. Sebastiano Panichella

31 January 2022

Roadmap

Introduction

Challenges

Our analyses

developer commenting practices
across languages

Conclusions

| T—— ————
|
|
|

Future work

| TTE— s

/
\

developer concerns
about comments

Code comments

[/ **

* A class representing a window on the screen.
*

For example:

<pre>
Window win = new Window(parent);
win.show();

</pre>

@author Sami Shaio
@version 1.13, 06/08/06
@see java.awt.BaseWindow
@see java.awt.Button

* % F ok ¥ ¥ * ok ok

>*

*/

class Window extends BaseWindow {

}

Code comments

[/ **

* A class representing a window on the screen.
*

* For example:

* <pre>

* Window win = new Window(parent);
* win.show();

* </pre>

*

* @author Sami Shaio

* @version 1.13, 06/08/06

* @see java.awt.BaseWindow

* @see java.awt.Button

*/

class Window extends BaseWindow {

}

Code comments

[/ **
* A class representing a window on the screen.
*
* For example:
* <pre>
* Window win = new Window(parent); Java
* 1 o
win.show(); class comment
* </pre>
*
* @author Sami Shaio
* @version 1.13, 06/08/06
* @see java.awt.BaseWindow
* @see java.awt.Button
*/

class Window extends BaseWindow {

Code comments

[/ **

* A class representing a window on the screen.
*

* For example:

* <pre>

* Window win = new Window(parent);
* win.show();

* </pre>

*

* @author Sami Shaio

* @version 1.13, 06/08/06

* @see java.awt.BaseWindow

* @see java.awt.Button

*/

class Window extends BaseWindow {

}

Trustworthy form of documentation

- McMillan et al. 2010

Code comments

[* %

* A class representing a window on the screen.
*

* For example:

* <pre>

* Window win = new Window(parent);
* win.show();

* </pre>

*

* @author Sami Shaio

* @version 1.13, 06/08/06

* @see java.awt.BaseWindow

* @see java.awt.Button

*/

class Window extends BaseWindow {

}

Trustworthy form of documentation

- McMillan et al. 2010
High-quality comments support developers in various activities

- Dekel et al. 2009

Code comments

[* %

* A class representing a window on the screen.
*

For example:

<pre->
Window win = new Window(parent);
win.show();

</pre>

@author Sami Shaio
@version 1.13, 06/08/06
@see java.awt.BaseWindow
@see java.awt.Button

* ok ok ¥ * ¥ ¥ ok X

*

*/

class Window extends BaseWindow {

Does this
comment contain any
example”

Code comments

For example:

<pre->
Window win = new Window(parent);
win.show();

</pre>

* * ok ¥ ok *

class Window extends BaseWindow {

Does t
comment co
examp

NIS
ntain any

e’/

How to ensure comment quality?

[* %
* A class representing a window on the screen.
*
* For example:
* <pre>
* Window win = new Window(parent);
* win.show();
* </pre>
*
* @author Sami Shaio
* @version 1.13, 06/08/06
* @see java.awt.BaseWindow
* @see java.awt.Button
* /

class Window extends BaseWindow {

s this a high-
quality comment?

Does this
comment contain any
example”

11

How to ensure comment quality?

/** | | adequate”
* A class representing a window on the screen.
For example: f?
cores correct:

Window win = new Window(parent);
win.show();

</pre> consistent?

@author Sami Shaio

@version 1.13, 06/08/06 Other quality attributes®

@see java.awt.BaseWindow
@see java.awt.Button

¥ F ok Kk ok * * ¥ ok *

*/

class Window extends BaseWindow {

s this a high-
quality comment?

Does this
comment contain any
example”

12

Challenges

No standard definition of comment quality

No strict syntax and style conventions

Lack of quality assessment tools

13

Challenges

No standard definition of comment quality

No strict syntax and style conventions

Lack of quality assessment tools

14

Challenges

No standard definition of comment quality

No strict syntax and style conventions

Lack of quality assessment tools

15

Challenges

No standard definition of comment quality
No strict syntax and style conventions

Lack of quality assessment tools

All these make quality assessment a non-trivial problem

Increasing multi-language environments

H apache /[spark Public

<> Code i9 Pull requests 229 (») Actions T Projects) Security

|~ Insights

Add file ~

v/ 50758ab 5 hours ago @ 32,196 col

¥ master ~ ¥ 22 branches ©169 tags Go to file

AngersZhuuuu and cloud-fan [SPARK-37907][SQL] InvokeLike suppo...

&

16

" .github [SPARK-37879][INFRA] Show test report in GitHub Actions builds fr... 8 day
M .idea [SPARK-35223] Add IssueNavigationLink 9 montt
W R [SPARK-37931][SQL] Quote the column name if neededQuote the c... yest
M assembly [SPARK-35996][BUILD] Setting version to 3.3.0-SNAPSHOT 7 month
" bin [SPARK-37004][PYTHON] Upgrade to Py4J 0.10.9.3 2 montkh
" binder [SPARK-37624][PYTHON][DOCS] Suppress warnings for live panda... last r
" build [SPARK-36856][BUILD] Get correct JAVA_HOME for macOS 4 montt
W common [SPARK-37037][SQL][FOLLOWUP] Remove unused field in UTF8Str... 11 hou
" conf [SPARK-37889][SQL] Replace Log4j2 MarkerFilter with RegexFilter 8 day
"W core [SPARK-37968][BUILD][CORE] Upgrade commons-collections 3.x t... 22 hout
W data [SPARK-37951][MLLIB][K8S] Move test file from ../data/ to corresp... 2 day
o dev [SPARK-37968][BUILD][CORE] Upgrade commons-collections 3.x t... 22 hout
" docs [SPARK-37950][SQL] Take EXTERNAL as a reserved table property 5 hout
" examples [SPARK-37854][CORE] Replace type check with pattern matching ... 6 day
W external [SPARK-36649][SQL] Support Trigger.AvailableNow on Kafka d... 8 hour
"M graphx Revert "[SPARK-37733][BUILD] Change log level of tests to WARN" 28 day

Increasing multi-language environments

Languages

| | | BN
® Scala 66.1% ® Python 12.2%

® Java 7.5% ® Jupyter Notebook 7.1%
HiveQL 3.1% ® R21%
Other 1.9%

18

Increasing multi-language environments

97% of open-source projects used two or more programming languages

- Tomassetti et al. 2014

19

Quality is a multi-dimensional concept

=

W

Gillies et al. 2011

20

It requires a multi-perspective view

ra — N

Gillies et al. 2011

21

We define three perspectives

academic support

developer
commenting practices
across languages

-
Lreent
-
-
.
.
»
.
»
~

developer concerns
about comments

.
.
..
-
- .-
.
Cee
.
—
-

22

We define three perspectives

academic support

§r-
Leent
-
-
o
o~
»
o
»
.
»
»

23

We define three perspectives

. academic support

24

How do researchers measure comment quality?

20

Previous work on software documentation

All kinds of software
documentation

Studies of 1971-2010

The Journal of Systems and Software 99 (2015) 175-198

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Cost, benefits and quality of software development documentation: @Cmmﬂ(
A systematic mapping

Junji Zhi?, Vahid Garousi-Yusifoglu®%*, Bo Sun%¢, Golara Garousi®!,
Shawn Shahnewaz ¢, Guenther Ruhe ¢4

2 Department of Computer Science, University of Toronto, Ontario, Canada

b System and Software Quality Engineering Research Group (SySoQual), Department of Software Engineering, Atilim University, Incek, Ankara, Turkey
€ Department of Electrical and Computer Engineering, University of Calgary, Alberta, Canada

d Department of Computer Science, University of Calgary, Alberta, Canada

€ iSolutions Inc., Calgary, Alberta, Canada

f 2e0LOGIC Systems Ltd., Calgary, Alberta, Canada

ARTICLE INFO ABSTRACT
Article history: Context: Software documentation is an integral part of any software development process. Researchers
Received 5 September 2012 and practitioners have expressed concerns about costs, benefits and quality of software documentation

Received in revised form

28 September 2014

Accepted 28 September 2014
Available online 22 October 2014

in practice. On the one hand, there is a lack of a comprehensive model to evaluate the quality of docu-
mentation. On the other hand, researchers and practitioners need to assess whether documentation cost
outweighs its benefit.

Objectives: In this study, we aim to summarize the existing literature and provide an overview of the field
of software documentation cost, benefit and quality.

K ds:

Sg}f'xvc;rr: documentation Method: We use the systematic-mapping methpdology tq map the e{(isting body of knowledge r-elated to

Documentation benefit software documentation cost, benefit and quality. To achieve our objectives, 11 Research Questions (RQ)

Systematic mapping are raised. The primary papers are carefully selected. After applying the inclusion and exclusion criteria,
our study pool included a set of 69 papers from 1971 to 2011. A systematic map is developed and refined
iteratively.

Results: We present the results of a systematic mapping covering different research aspects related to
software documentation cost, benefit and quality (RQ 1-11). Key findings include: (1) validation research
papers are dominating (27 papers), followed by solution proposals (21 papers). (2) Most papers (61 out
of 69) do not mention the development life-cycle model explicitly. Agile development is only mentioned
in 6 papers. (3) Most papers include only one “System under Study” (SUS) which is mostly academic
prototype. The average number of participants in survey-based papers is 106, the highest one having
approximately 1000 participants. (4) In terms of focus of papers, 50 papers focused on documentation
quality, followed by 37 papers on benefit, and 12 papers on documentation cost. (5) The quality attributes
of documentation that appear in most papers are, in order: completeness, consistency and accessibility.
Additionally, improved meta-models for documentation cost, benefit and quality are also presented.
Furthermore, we have created an online paper repository of the primary papers analyzed and mapped
during this study.

/hi et al. 2014

Only 10% of the studies focused on code comments

20

How do researchers measure comment quality?

Systematic literature review

10 years timeline (2010-2020)
195 software engineering venues
332 proceedings

48 relevant papers

27

Analyzed dimensions

B method comments, class comments
Comment types

28

Analyzed dimensions

~

| | | | | | | consistency, completeness

Quality attributes

29

Analyzed dimensions

=

Comment types

~
11111}

Quality attributes

Techniques

method comments, class comments

consistency, completeness

heuristic-based, machine learning-based

Comment types

Code comments
Method comments

API documentation
License comments
Inline comments

TODO Comments
Software documentation

Deprecation Comments

30

Comment types

52% of the studies

Method comments

API documentation
License comments
Inline comments

TODO Comments
Software documentation

Deprecation Comments

31

Comment types

Code comments

Method comment

API documentatio

[License comments

Inline comments

TODO Comment

Software documentation

Deprecation Comments

32

48% of the studies

Comment types

Code comments

Method comment

API documentatio

[License comments

Inline comments

TODO Comment

Software documentation

Deprecation Comments

The studies focus on specific types of comments but class comments

33

Comment types

Java
Code comments 48% 6% 6% 2% 4% 8%
Python
Method comments 19% 6% 2% 4% C++
C
API documentation 8%
C#
Other

License comments| 4% 4% 4% 2% 2%
Inline comments| 4% 2%
TODO Comments [2%
Software documentation [2%

Deprecation Comments 2%

0% 20% 40% 60% 80%
% of studies

34

Comment types

Java
Code comments 48% 6% 6% 2% 4% 8%
Python

API documentation 8%
C#
[License comments | 4% 4% 4% 2% 2% Other
Inline comments| 4% 2%
TODO Comments [2%

Software documentation 2%

Deprecation Comments 2%

0% 20% 40% 60% 80%

04 of etidies

35 88% of the studies focus on Java

Comment types

Java
Code comments 489 6% 6% 2% 4% 8%
Python
Method comments 19‘V% 4% C++
C
API documentation 8% C

[License comments | 4% 4% 4% 2% 2% Other

Inline comments| 4% 2%
TODO Comments [2%
Software documentation 2%

Deprecation Comments 2%

0% 20% 40% 60% 80%
% of studies

36

Comment types

Java
Code comments 48% 6% 6% 2% 4% 8%
Python
Method comments 19% 6% 2% 4% C++
C
API documentation 8%
C#
Other

License comments| 4% 4% 4% 2% 2%
Inline comments| 4% 2%
TODO Comments [2%
Software documentation [2%

Deprecation Comments 2%

0% 20% 40% 60% 80%
% of studies

37

A~ | |
1] Quality attributes

38

21 quality attributes

39

A~ | |
1] Quality attributes

21 quality attributes

Quality attributes

Consistency

Completeness

Accuracy

I Readability

Up-to-date-ness

Content relevance

Maintainability

Spelling and grammar

A~ | |
1] Quality attributes

Some quality attributes are frequently considered

40

Quality attributes

Spelling and grammar

41

A~ | |
1] Quality attributes

Some quality attributes are frequently considered

Quality attributes

Consistency

Completeness

Accuracy

Readability

Up-to-date-ness

Content relevance

I Maintainability

I Spelling and grammar

I Conciseness

I Usability
I Correctness

I Traceability
B Accessibility

. Coherence

g Format
g Information organization

g Understandability

= Documentation technoogy
= INternatioalization
= Author-related

A~ | |
1] Quality attributes

42

Some quality attributes are rarely considered

Quality attributes

Consistency

Completeness

Accuracy

Readability

Up-to-date-ness

Content relevance

I Maintainability

I Spelling and grammar

I Conciseness

I Usability

I Correctness

I Traceability
B Accessibility

. Coherence

g Format
g Information organization

g Understandability

= Documentation technoogy
= INternatioalization

= Author-related

43

Quality attributes

Techniques

Consistency

Completeness

Accuracy

Readability

Up-to-date-ness

Content relevance

I Maintainability

I Spelling and grammar

I Conciseness

I Usability
I Correctness

I Traceability
B Accessibility

. Coherence

g Format
g Information organization

g Understandability

= Documentation technoogy
= INternatioalization

= Author-related

44

Techniques

Quality attributes

Consistency

Completeness

Accuracy

Readability

Up-to-date-ness

Content relevance

I Maintainability

I Spelling and grammar

I Conciseness

I Usability
I Correctness

I Traceability
B Accessibility

. Coherence

H Format

g Information organization

m Understandability

= Documentation technoogy

= INternatioalization
= Author-related

Techniques

Manual assessment

ML-based

Metric-based

Static analysis

NLP

Heuristic-based I

DNN-based I

First order logic I

Empirically
fNIRS

45

Techniques

Quality attributes Techniques

Consistency

Manual assessment

"

e

Completeness /

ML-based
Accuracy
Readability

Heuristic-based
Up-to-date-ness

Content relevance .
Metric-based

I Maintainability

Static analysis
Spelling and grammar

Conciseness -

I Usability

I Correctness DNN-based I

I Traceability First order logic I

- -
Empirically oo

. Coherence fNIRS

m Format
mlr DN organization
m Understandability

= Documentatiow*technoogy
m==ternatioalization
= Author-related

46

Techniques

Manual assessment is still the most
frequent technique to measure
qguality attributes

Quality attributes

Consistency

Techniques

Manual assessment

Completeness
——
N
\\ — V
3 ML-based
Accuracy ‘\\“ . a - & ase
oS X
a«
> e NS
N\
Readability
Wl a
o :‘ Heuristic-based
I Up-to-date-ness \ ‘
\ \&‘ 49
: *0' N >
I Content relevance v ? . Metric-based
I Maintainability / ‘/ :
el o
g - L o Static analysis
I Spelling and grammar y. > <
- .
IConciseness - *\\
> o> v - NLP
P i 3 ~—
I Usability \
I Correctness < DNN-based I
-

I Traceability

. Coherence

m Format
gpinformation organizatior

m Understandability

= Documentatiow*technoogy
m=iRternatioalization

= Author-related

First order logic I

Empirically o
fNIRS

47

Quality attributes

Techniques

Consistency

I Traceability

not been extensively explored for
comment analysis

. Coherence

m Format
gpinformation organizatior

m Understandability

= Documentatiow*technoogy
m=iRternatioalization

= Author-related

Techniques

Manual assessment

Completeness
——
—~ < /
N &
Accuracy s& v a 3(ML-based
AN\ N) »
. N Ry
N N
Readability
! 3
o “ Heuristic-based
Up-to-date-ness ‘
I N ,
v '
I Content relevance v NS T
I Maintainability
- y = Static analysis
I Spelling and grammar y. ‘ <
>
- A -
I Conciseness
- e NLP
- ~—
I Usability N T~
Deep learning-based techniques have gcerectness S owwbasea

First order logic I

Empirically o
fNIRS

48

Take-home messages

M Class comments provide an overview of a program,
but are not analyzed enough.

™M Studies focus mainly on Java.

M Manual assessment is still the most frequent technique to measure
various quality attributes.

49

Take-home messages

M Class comments provide an overview of a program, but are not
analyzed enougnh.

M Studies focus mainly on Java.

M Manual assessment is still the most frequent technique to measure
various quality attributes.

50

Take-home messages

M Class comments provide an overview of a program, but are not
analyzed enougnh.

™M Studies focus mainly on Java.

M Manual assessment is still the most frequent
technigue to measure various quality attributes.

51

A Decade of Code Comment Quality Assessment: A Systematic Literature Review

Pooja Rani?, Arianna Blasi®, Nataliia Stulova?, Sebastiano Panichella®, Alessandra Gorlad, Oscar Nierstrasz?

“Software Composition Group, University of Bern, Bern, Switzerland
bUniversita della Svizzera italiana, Lugano, Switzerland
¢Zurich University of Applied Science, Zurich, Switzerland
4IMDEA Software Institute, Madrid, Spain

Abstract

Code comments are important artifacts in software systems and play a paramount role in many software engineering (SE) tasks
related to maintenance and program comprehension. However, while it is widely accepted that high quality matters in code com-
ments just as it matters in source code, assessing comment quality in practice is still an open problem. First and foremost, there
is no unique definition of quality when it comes to evaluating code comments. The few existing studies on this topic rather focus
on specific attributes of quality that can be easily quantified and measured. Existing techniques and corresponding tools may also
focus on comments bound to a specific programming language, and may only deal with comments with specific scopes and clear
goals (e.g., Javadoc comments at the method level, or in-body comments describing TODOs to address).

In this paper, we present a Systematic Literature Review (SLR) of the last decade of research in SE to answer the following
research questions: (i) What types of comments do researchers focus on when assessing comment quality? (ii) What quality
attributes (QAs) do they consider? (iii) Which fools and techniques do they use to assess comment quality?, and (iv) How do they
evaluate their studies on comment quality assessment in general?

Our evaluation, based on the analysis of 2353 papers and actual review of 48 relevant ones, shows that (i) most studies and
techniques focus on comments in Java code, and thus may not be generalizable to other languages; and (ii) the analyzed studies
focus on four main QAs of a total of 21 QAs identified in the literature, with a clear predominance of checking consistency between
comments and the code. We observe that researchers rely on manual assessment and specific heuristics rather than the automated
assessment of the comment quality attributes, with evaluations often involving surveys of students and the authors of the original
studies but rarely professional developers.

Keywords: code comments, documentation quality, systematic literature review

1. Introduction software with various artifacts, such as design documents and

) . . code comments [4]. Several studies have demonstrated that
Software systems are often written in several programming

. . . high quality code comments can support developers in software
languages [1], and interact with many hardware devices and

comprehension, bug detection, and program maintenance ac-
software components [2, 3]. To deal with such complexity and P . Prog

. . tivities [5, 6, 7]. However, code comments are typically written
to ease maintenance tasks, developers tend to document their [] P y

using natural language sentences, and their syntax is neither im-

Email addresses: pooja.rani@inf.unibe.ch (Pooja Rani), pOSCd by a programming language’s grammar nor checked by

arianna.blasi@usi.ch (Arianna Blasi),
its compiler. Additionally, static analysis tools and linters pro-
nataliia.stulova@inf.unibe.ch (Nataliia Stulova), panc@zhaw.ch

(Sebastiano Panichella), alessandra.gorla@imdea.org (Alessandra vide limited syntactic support to check comment quahty' There-

Gorla), oscar .nierstrasz@inf.unibe. ch (Oscar Nierstrasz)

Preprint submitted to Journal of Systems and Software October 8, 2021

P. Rani, A. Blasi, N. Stulova, S. Panichella, A. Gorla, and O.
Nierstrasz. A Decade of comment quality assessment: A

systematic literature review, Journal of Systems & Software,
2021

b
UNIVERSITAT
BERN

Zurich University
of Applied Sciences

zh
aw

*

u
N I

b
UNIVERSITAT
BERN

52

We detine three perspectives

academic support

| ; .
—
: -
.

- - v
. — -
- ——
. o
. o~
.
e -
. o
’
- w*
) e
- o
- -
- —
. »
o '
- o

53

We detine three perspectives

| ; .
—
: -
.

. i
- - v
. — -
- ——
. o
. o~
.
e -
. o
’
- w*
) e
- o
- -
- —
. »
o '
- o

54

We detine three perspectives

commenting practices
across languages m

developer ‘

P2: class commenting practices

- i v
- -l
— Y o .
———ey. 4
- .
- | -
> »
. -
- ——
\ o
.
. o
-
e -
p
"
.
.
”
~

developer
commenting practices

across languages m

55

56

What information developers write in class
comments across languages?

Do they follow the coding style guidelines?

57

What information developers write in class
comments across languages?

58

Information types in comments

[* %

* A class representing a window on the screen. Summary

59

Information types in comments

[* %

For example:
<pre->

. Usage
win.show();

*
*
* Window win = new Window(parent);
*
*

</pre>

60

Information types in comments

[* %

* @see java.awt.BaseWindow Pointer

* @see java.awt.Button

*/

Comment taxonomies in Java and Python

Java s&% Python ¢ =

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

o1

Classifying code comments
in Java open-source software systems

Luca Pascarella
Delft University of Technology
Delft, The Netherlands
L.Pascarella@tudelft.nl

Abstract—Code comments are a key software component
containing information about the underlying implementation.
Several studies have shown that code comments enhance the
readability of the code. Nevertheless, not all the comments have
the same goal and target audience. In this paper, we investigate
how six diverse Java OSS projects use code comments, with the
aim of understanding their purpose. Through our analysis, we
produce a taxonomy of source code comments; subsequently, we
investigate how often each category occur by manually classify-
ing more than 2,000 code comments from the aforementioned
projects. In addition, we conduct an initial evaluation on how
to automatically classify code comments at line level into our
taxonomy using machine learning; initial results are promising
and suggest that an accurate classification is within reach.

I. INTRODUCTION
While writing and reading source code, software engineers

Alberto Bacchelli
Delft University of Technology
Delft, The Netherlands
A.Bacchelli @tudelft.nl

Haouari et al. [11] and Steidl et al. [28] presented the ear-
liest and most significant results in comments’ classification.
Haouari et al. investigated developers’ commenting habits, fo-
cusing on the position of comments with respect to source code
and proposing an initial taxonomy that includes four high-
level categories [11]; Steidl et al. proposed a semi-automated
approach for the quantitative and qualitative evaluation of
comment quality, based on classifying comments in seven
high-level categories [28]. In spite of the innovative techniques
they proposed to both understanding developers’ commenting
habits and assessing comments’ quality, the classification of
comments was not in their primary focus.

In this paper, we focus on increasing our empirical under-
standing of the types of comments that developers write in
source code files. This is a kev step to guide future research

L —

Pascarella et al., 2017

Classifying Python Code Comments
Based on Supervised Learning

Jingyi Zhang', Lei Xu?(®™) and Yanhui Li?

! School of Management and Engineering, Nanjing University,
Nanjing, Jiangsu, China
jyzhangchn@outlook.com
2 Department of Computer Science and Technology, Nanjing University,
Nanjing, Jiangsu, China
{xlei,yanhuili}@nju.edu.cn

Abstract. Code comments can provide a great data source for under-
standing programmer’s needs and underlying implementation. Previous
work has illustrated that code comments enhance the reliability and
maintainability of the code, and engineers use them to interpret their
code as well as help other developers understand the code intention
better. In this paper, we studied comments from 7 python open source
projects and contrived a taxonomy through an iterative process. To clar-
ify comments characteristics, we deploy an effective and automated app-
roach using supervised learning algorithms to classify code comments
according to their different intentions. With our study, we find that
there does exist a pattern across different python projects: Summary
covers about 75% of comments. Finally, we conduct an evaluation on the
behaviors of two different supervised learning classifiers and find that
Decision Tree classifier is more effective on accuracy and runtime than
Naive Bayes classifier in our research.

— S

/hang et al., 2018

omment taxonomies in Java and Python

Java s&% Python ¢ =

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

Classifying code comments
in Java open-source software systems

Luca Pascarella
Delft University of Technology
Delft, The Netherlands
L.Pascarella@tudelft.nl

Abstract—Code comments are a key software component
containing information about the underlying implementation.
Several studies have shown that code comments enhance the
readability of the code. Nevertheless, not all the comments have
the same goal and target audience. In this paper, we investigate
how six diverse Java OSS projects use code comments, with the
aim of understanding their purpose. Through our analysis, we
produce a taxonomy of source code comments; subsequently, we
investigate how often each category occur by manually classify-
ing more than 2,000 code comments from the aforementioned
projects. In addition, we conduct an initial evaluation on how
to automatically classify code comments at line level into our
taxonomy using machine learning; initial results are promising
and suggest that an accurate classification is within reach.

I. INTRODUCTION
While writing and reading source code, software engineers

Alberto Bacchelli
Delft University of Technology
Delft, The Netherlands
A .Bacchelli @tudelft.nl

Haouari et al. [11] and Steidl et al. [28] presented the ear-
liest and most significant results in comments’ classification.
Haouari et al. investigated developers’ commenting habits, fo-
cusing on the position of comments with respect to source code
and proposing an initial taxonomy that includes four high-
level categories [11]; Steidl et al. proposed a semi-automated
approach for the quantitative and qualitative evaluation of
comment quality, based on classifying comments in seven
high-level categories [28]. In spite of the innovative techniques
they proposed to both understanding developers’ commenting
habits and assessing comments’ quality, the classification of
comments was not in their primary focus.

In this paper, we focus on increasing our empirical under-
standing of the types of comments that developers write in
source code files. This is a kev step to guide future research

| ———

Classifying Python Code Comments
Based on Supervised Learning

Jingyi Zhang', Lei Xu?(®™) and Yanhui Li?

! School of Management and Engineering, Nanjing University,
Nanjing, Jiangsu, China
jyzhangchn@outlook.com
2 Department of Computer Science and Technology, Nanjing University,
Nanjing, Jiangsu, China
{xlei,yanhuili}@nju.edu.cn

Abstract. Code comments can provide a great data source for under-
standing programmer’s needs and underlying implementation. Previous
work has illustrated that code comments enhance the reliability and
maintainability of the code, and engineers use them to interpret their
code as well as help other developers understand the code intention
better. In this paper, we studied comments from 7 python open source
projects and contrived a taxonomy through an iterative process. To clar-
ify comments characteristics, we deploy an effective and automated app-
roach using supervised learning algorithms to classify code comments
according to their different intentions. With our study, we find that
there does exist a pattern across different python projects: Summary
covers about 75% of comments. Finally, we conduct an evaluation on the
behaviors of two different supervised learning classifiers and find that
Decision Tree classifier is more effective on accuracy and runtime than
Naive Bayes classifier in our research.

| —— S

Pascarella et al., 2017 /hang et al., 2018

The taxonomies do not focus specifically on class comments

Smalltalk class comments

< Comment X

Intent ’ I represent a message to be scheduled by the WorldState.

03

Smalltalk class comments

< Comment X

I represent a message to be scheduled by the WorldState.

For example, you can see me in action with the following example which print 'alarm test' on Transcrij
one second after evaluating the code:

Transcript open.
MorphicUIManager currentWorld

Example addAlarm: #show:

withArguments: #('alarm test')
for: Transcript
at: (Time millisecondClockValue + 1000).

04

Smalltalk class comments

7 Comment x + a
I represent a message to be scheduled by the WorldState.

For example, you can see me in action with the following example which print 'alarm test' on Transcript
one second after evaluating the code:

Transcript open.
MorphicUIManager currentWorld
addAlarm: #show:
withArguments: #('alarm test')
for: Transcript
at: (Time millisecondClockValue + 1000).

* Note x
Compared to doing:

[(Delay forMilliseconds: 1000) wait. Transcript show: 'alarm test'] forkAt: Processor activeProcess
priority +1.

the alarm system has several distinctions:
|mp|emen’[a’[ion - Runs with the step refresh rate resolution.
details - Alarms only run for the active world. (Unless a non-standard scheduler is 1in use)
— - Alarms with the same scheduled time are guaranteed to be executed in the order they were added

05
Pharo 7 core

Smalltalk class comments

Intent

S ———E

Example

Implementation
details

60

7 Comment X + @& 5
I represent a message to be scheduled by the WorldState.

For example, you can see me in action with the following example which print 'alarm test' on Transcript
one second after evaluating the code:

Transcript open.
MorphicUIManager currentWorld
addAlarm: #show:
withArguments: #('alarm test')
for: Transcript
at: (Time millisecondClockValue + 1000).

* Note «*

Compared to doing:

[(Delay forMilliseconds: 1000) wait. Transcript show: 'alarm test'] forkAt: Processor activeProcess
priority +1.

the alarm system has several distinctions:

- Runs with the step refresh rate resolution.

- Alarms only run for the active world. (Unless a non-standard scheduler 1is 1in use)

- Alarms with the same scheduled time are guaranteed to be executed in the order they were added

Unlike Java and Python, there is no comment taxonomy

Pharo 7 core

6/

Information types in Smalltalk

Pharo 7 core
Smalltalk

6,324 class comments

363 sample comments

63

Information types in Smalltalk

Intent

P h a rO 7 C O re Responsibility
Collaborators

S ma | | ta | k Class references
Examples

Implementation points
Warnings

Instance variables

6,324 class comments

Contracts
§ Dependencies
;51) ReferencesOtherResources
363 sample comments
@) Recommendations
of)
3

Subclasses explanation
Observations

Naming conventions
Other

Extensions

Coding guidelines
Links

TODO comments

License

T 231

134

I—— 75
I 57
I 51

I 40

[
I 33

43

I 34

29
0]
C RN
10
LK
4
K
13
4
13

12

50

100 150

comments

200

250

256

300

Information types in Smalltalk

Intent

H ig h - I evel Ove rVi eW Responsibility

Collaborators

Class references I_—_—_————_ 75
Examples m— 57
Implementation points I 51
Warnings s 40
Instance variables I——m 43

Key messages I 33
Contracts IE—— 34

Dependencies mmmmmm 29

ReferencesOtherResources 21

Discourse W 11

Recommendations W 10

23 Categories

Subclasses explanation M 8
Observations 04
Naming conventions B 5
Other 13
Extensions N4
Coding guidelines 13
Links 12
TODO comments |1

License 11

0 50 100 150 200 250 300

comments

Information types in Smalltalk

High-level overview

Conversation
exchanged

70

Intent

Responsibility

Collaborators

Class references I—_—_——————— 75
Examples I 57
Implementation points I 51
Warnings s 40
Instance variables I————_ 43

Key messages I 33
Contracts I 34

Dependencies mmmmmm 29

ReferencesOtherResources I 21

Discourse W 11
Recommendations W 10

Subclasses explanation M 8

23 Categories

Observations B4
Naming conventions B 5
Other 13

Extensions N4

Coding guidelines 13
Links 12

TODO comments |1

License 11

0 50 100 150 200 250 300

comments

/1

We mapped first the existing taxonomies of
, , and and then
aagapted them to comments.

/2

Information types across languages

20 open-source projects

Java, Python, Smalltalk

37,446 class comments

1,066 sample comments

/3

Information types across languages

Java

Summary

Expand

I Pointer

I Rationale

J Usage

l Deprecation

Smalltalk

Intent

Responsibility I

Collaborator I
Key message I

Key implementation point |}
Examples |}

Class reference B

Python

Summary

Links

Development notes

Expand I
i

Usage

Information types across languages

Java Smalltalk Python

Intent |

Summary
Responsibility I

Summary

Expand Collaborator I

Key message I

I Pointer Expand I
i

Key implementation point |

Warning |}

I Rationale Links
Example |}
Development notes
I Usage Class reference 1 P
i Deprecation Instance variable =
ReferenceOtherResource = Usage
o o
® ®
° * Parameters g

Version g
o

Developers write similar kinds of information in class comments across languages

Information types across languages

Java

Summary

Expand

I Pointer

I Rationale

I Usage

i Deprecation

I4S

Smalltalk

Intent |

Responsibility I

Collaborator I

Key message I

Key implementation point |
Warning |}
Example |}

Class reference B

Instance variable =

ReferenceOtherResource m

There are also other language-specific information types

Python

Summary

Links

Development notes

Expand I
i

Usage

Parameters g
Version g

/6

Automatic identification of information types

[* %

* A class representing a window on the screen.

Summary

7

Automatic identification of information types

[* %

* A class representing a window on the screen. Summary

Recurrent natural language patterns exist in various information types

/8

Automatic identification of information types

[* %

* A class representing a window on the screen. | Summary Represents [something]

[verb|s [noun]

Recurrent natural language patterns exist in various information types

79

Automatic identification of information types

[* %

* A class representing a window on the screen. | Summary Represents [something]

[verb]s [noun]

* @see java.awt.BaseWindow Pointer
* @see java.awt.Button

Recurrent natural language patterns exist in various information types

Automatic identification of information types

[* %

* A class representing a window on the screen. | Summary Represents [something]

[verb]s [noun]

* @see java.awt.BaseWindow Pointer Sees [something]

* @see java.awt.Button

Recurrent natural language patterns exist in various information types

80

81

Automatic identification of information types

[/ **
* A class representing a window on the screen. | Summary Represents [something]
*
* For example: [verb]s [noun]
* <pre>
* Window win = new Window(parent);
* wiln.show();
* </pre>
*
* @author Sami Shaio
* @version 1.13, 06/08/06
* @see java.awt.BaseWindow Pointer Sees [something]
*

@see java.awt.Button
*/

class Window extends BaseWindow {

}

Intention mining in informal software documents

* Jo automatically identity textual
patterns in informal software
documents, intention mining can
be used.

DI —
DI Sorbo et al., 2015

2015 30th IEEE/ACM International Conference on Automated Software Engineering

Development Emails Content Analyzer: Intention
Mining in Developer Discussions

Andrea Di Sorbo*, Sebastiano Panichella’, Corrado A. Visaggio®,
Massimiliano Di Penta*, Gerardo Canfora* and Harald C. Gallf
*University of Sannio, Benevento, Italy
TUniversity of Zurich, Switzerland
disorbo@unisannio.it, panichella@ifi.uzh.ch, {visaggio,dipenta,canfora} @unisannio.it, gall @ifi.uzh.ch

Abstract—Written development communication (e.g. mailing
lists, issue trackers) constitutes a precious source of information to
build recommenders for software engineers, for example aimed at
suggesting experts, or at redocumenting existing source code. In
this paper we propose a novel, semi-supervised approach named
DECA (Development Emails Content Analyzer) that uses Natural
Language Parsing to classify the content of development emails
according to their purpose (e.g. feature request, opinion asking,
problem discovery, solution proposal, information giving etc),
identifying email elements that can be used for specific tasks.
A study based on data from Qt and Ubuntu, highlights a high
precision (90%) and recall (70%) of DECA in classifying email
content, outperforming traditional machine learning strategies.
Moreover, we successfully used DECA for re-documenting source
code of Eclipse and Lucene, improving the recall, while keeping
high precision, of a previous approach based on ad-hoc heuristics.

Keywords—Unstructured Data Mining, Natural Language Pro-
cessing, Empirical Study

I. INTRODUCTION

In many open sources and industrial projects, developers
make an intense usage of written communication channels,
such as mailing lists, issue trackers and chats [44]. Although
voice communication still remains something unavoidable [1],
[37], such channels ease the communication of developers

For example, an issue report may relate to a feature request, a
bug, or just to a project management discussion. For example,
Herzig et al. [30] and Antoniol et al. [2] found that over 30%
of all issue reports are misclassified (i.e., rather than referring
to a code fix, they resulted in a new feature, an update of
documentation, or an internal refactoring). Hence, relying on
such data to build fault prediction or localization approaches
might result in incorrect results. Kochhar et al. [35] shed light
on the need for additional cleaning steps to be performed on
issue reports for improving bug localization tasks. This, for
example, may involve a re-classification of issue reports.

On a different side, certain recommender may require to
mine specific portions of a written communication, for example
to identify questions being asked by developers [29] or to mine
descriptions about certain methods [5], [45]. Also, sometimes
an email or a discussion is too long and this does not help a
developer who get lost in unnecessary details. To cope with
this issue, previous literature proposed approaches aimed at
generating summaries of emails [36], [46], [48] and bug reports
[47]. However, none of the aforementioned approaches is able
to classify paragraphs contained in developers’ communication
according to the developers’ intent, in order to only focus on
paragraphs useful for a specific purposes (e.g. fixing bugs, add
new features, improve existing features etc.).

..

82 Di Sorbo et. al., Development Emails Content Analyzer: Intention Mining in Developer Discussions (T). ASE 2015: 12-23

Intention mining in informal software documents

* Jo automatically identity textual
patterns in informal software
documents, intention mining can
be used.

 Di Sorbo et al., developed a tool,
NEON, to detect natural language
patterns.

83 Di Sorbo et. al., An NLP-based Tool for Software Artifact Analysis. |ICSM

2015 30th IEEE/ACM International Conference on Automated Software Engineering

Development Emails Content Analyzer: Intention
Mining in Developer Discussions

2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)

An NLP-based Tool for Software Artifacts Analysis

Andrea Di Sorbo*, Corrado A. Visaggio*, Massimiliano Di Penta*,
Gerardo Canfora*, Sebastiano Panichella’
*University of Sannio, Italy
TZurich University of Applied Sciences, Switzerland
{disorbo, visaggio, dipenta, canfora} @unisannio.it, panc@zhaw.ch

Abstract—Software developers rely on various repositories and
communication channels to exchange relevant information about
their ongoing tasks and the status of overall project progress.
In this context, semi-structured and unstructured software arti-
facts have been leveraged by researchers to build recommender
systems aimed at supporting developers in different tasks, such
as transforming user feedback in maintenance and evolution
tasks, suggesting experts, or generating software documentation.
More specifically, Natural Language (NL) parsing techniques
have been successfully leveraged to automatically identify (or
extract) the relevant information embedded in unstructured
software artifacts. However, such techniques require the manual
identification of patterns to be used for classification purposes.
To reduce such a manual effort, we propose an NL parsing-
based tool for software artifacts analysis named NEON that can
automate the mining of such rules, minimizing the manual effort
of developers and researchers. Through a small study involving
human subjects with NL processing and parsing expertise, we
assess the performance of NEON in identifying rules useful to
classify app reviews for software maintenance purposes. OQur
results show that more than one-third of the rules inferred by
NEON are relevant for the proposed task.

Demo webpage: https://github.com/adisorbo/NEON_tool

Index Terms—Unstructured Data Mining, Natural Language

Parsing, Software maintenance and evolution

[. INTRODUCTION

Software developers intensively rely on of software reposi-
tories [1], [9], [29] and written communication channels [7],
[24] for exchanging relevant information about the ongoing
development tasks and the status of overall project progress.

word (or, in the best case, infer latent topics/concepts from
them). This makes them ineffective when a deeper level of
detail in the text analysis and interpretation is needed [16]-
[18].

To overcome the limitations of approaches based on bag-
of-words representations, and to automatically identify textual
patterns in informal software documents that are relevant
to different evolution tasks, in previous work we proposed
an approach named intention mining [16], which leverages
Natural Language (NL) parsing techniques. Such an approach
has been successfully applied for classification [17], [25], [27],
summarization [15], [28], or quality assessment [11], [32]
purposes, where it turned out to be more accurate than models
based on bag-of-words representations.

The main challenge of leveraging approaches based on NL
parsing techniques is that they require the manual definition of
sets of NL rules [15], [16], [25] to recognize natural language
patterns. This manual task has proven to be effort-intensive
and error-prone, since it requires specific domain-knowledge
in natural language parsing [18]. For this reason, recent
research [19] attempted to automate and generalize intention
mining by experimenting with deep learning-based methods.
However, while deep learning-based approaches avoid the
manual tagging of textual information, they hampers the
interpretability of the results, making it difficult to understand
the specific linguistic patterns that have been identified. Such
patterns are indeed crucial to support several tasks, e.g.,

Automatic identification of information types

1)

Java
_/\

Python
\y/—\ —>

Smalltalk

— Class Comment Type Model
Projects CCTM
Ground truth: 1,066 Features: recurrent NL Supervised ML

classified comments patterns + text features algorithms

84

Automatic identification of information types

1)

Java
\/\

Pyth
P]

Smalltalk
/\

Class Comment Type Model

Projects CCTM

2)
A(\N V/\P
] /\

Fruit flies like Det

)

| blin.ma

Natural Language
Processing (NLP)

NLP Rule Features

e techmques ,,,,,
§ d at ,,,,,,,,,,,,,,
o NLP || Q Q
|nformat|on vnsua |zatlon. di
GS TING patterns. easier
SR e
Textual Analysis (TA) TA Features

lechniques Features

3) 4)

J48

Naive Bayes |
Random Forest, .

‘ Il|| d '

9 @

Learning phase Evaluation

Learnmg_LLg

Ground truth: 1,066
classified comments

85

Features: recurrent NL
patterns + text features

Supervised ML
algorithms

AoBINdOY

—NaiveBayes J48

[E—

80

90

70

c0

86

Results

RandomForest

Top categories in Java comments

—NaiveBayes —J48 —RandomForest
7))
5 G G 2 3
[g@) 2 8
2 % E! < 3
! =~ 2 %
2 @
S
Z
%
@

Top categories in Python comments

—NaiveBayes J48 RandomForest

5
2
%
S
=.
(P
2

Top categories in Smalltalk comments

Random Forest technique classifies comments better

87

Take-home messages

™ Class comments contain high-level design to low-
level Implementation details.

@ Using recurrent NL patterns as features improves the classification.

g Some information types need more advanced technigues to
accurately identity.

38

Take-home messages

™ Class comments contain high-level design to low-level
implementation detaills.

@ Using recurrent NL patterns as features improves
the classification.

M Some information types need more advanced technigues to
accurately identity.

89

Take-home messages

™ Class comments contain high-level design to low-level
implementation detaills.

@ Using recurrent NL patterns as features improves the classification.

M Some information types need more advanced
technigques to accurately identity.

00 Replication Package on GitHub

Empirical Software Engineering (2021) 26: 112
https://doi.org/10.1007/510664-021-09981-5

®

Check for
updates

What do class comments tell us? An investigation
of comment evolution and practices in Pharo Smalltalk

Pooja Rani' - Sebastiano Panichella - Manuel Leuenberger' - Mohammad Ghafari? -
Oscar Nierstrasz'

Accepted: 25 May 2021 Published online: 18 August 2021
© The Author(s) 2021

Abstract

Context Previous studies have characterized code comments in various programming lan-
guages, showing how high quality of code comments is crucial to support program com-
prehension activities, and to improve the effectiveness of maintenance tasks. However, very
few studies have focused on understanding developer practices to write comments. None of
them has compared such developer practices to the standard comment guidelines to study
the extent to which developers follow the guidelines.

Objective Therefore, our goal is to investigate developer commenting practices and com-
pare them to the comment guidelines.

Method This paper reports the first empirical study investigating commenting practices
in Pharo Smalltalk. First, we analyze class comment evolution over seven Pharo versions.
Then, we quantitatively and qualitatively investigate the information types embedded in
class comments. Finally, we study the adherence of developer commenting practices to the
official class comment template over Pharo versions.

Results Our results show that there is a rapid increase in class comments in the initial three
Pharo versions, while in subsequent versions developers added comments to both new
and old classes, thus maintaining a similar code to comment ratio. We furthermore found
three times as many information types in class comments as those suggested by the tem-
plate. However, the information types suggested by the template tend to be present more
often than other types of information. Additionally, we find that a substantial proportion of
comments follow the writing style of the template in writing these information types, but
they are written and formatted in a non-uniform way.

Conclusion The results suggest the need to standardize the commenting guidelines for for-
matting the text, and to provide headers for the different information types to ensure a con-
sistent style and to identify the information easily. Given the importance of high-quality
code comments, we draw numerous implications for developers and researchers to improve
the support for comment quality assessment tools.

Keywords Commenting practices - Class comment analysis - Comment evolution -
Template analysis - Pharo - Program comprehension

Communicated by Andrian Marcus

Pooja Rani
pooja.rani @inf.unibe.ch

Extended author information available on the last page of the article

@ Springer

P. Rani, S. Panichella, M. Leuenberger, M. Ghafari, and O.
Nierstrasz. What do class comments tell us? An
investigation of comment evolution and practices in Pharo
Smalltalk, Empirical Software Engineering, 2021

https://qgithub.com/poojaruhal/CommentAnalysisinPharo

Zurich University
of Applied Sciences

zh
aw

b
UNIVERSITAT
BERN

THE UNIVERSITY OF

AUCKLAND

NEW ZEALAND

b
UNIVERSITAT
BERN

https://github.com/poojaruhal/CommentAnalysisInPharo

91 Replication Package on GitHub

The Journal of Systems & Software 181 (2021) 111047

The Journal of Systems & Software

Contents lists available at ScienceDirect

SOFTWARE

-

journal homepage: www.elsevier.com/locate/jss

How to identify class comment types? A multi-language approach for 1)

Check for

class comment classification 2C
Pooja Rani®* Sebastiano Panichella®, Manuel Leuenberger?, Andrea Di Sorbo ¢,

Oscar Nierstrasz?

* Software Composition Group, University of Bern, Switzerland

b Zurich University of Applied Science, Switzerland

€ Department of Engineering, University of Sannio, Italy

ARTICLE INFO

Article history:

Received 16 December 2020
Received in revised form 5 June 2021
Accepted 9 July 2021

Available online 19 July 2021

Keywords:

Natural language processing technique
Code comment analysis

Software documentation

ABSTRACT

Most software maintenance and evolution tasks require developers to understand the source code of
their software systems. Software developers usually inspect class comments to gain knowledge about
program behavior, regardless of the programming language they are using. Unfortunately, (i) different
programming languages present language-specific code commenting notations and guidelines; and (ii)
the source code of software projects often lacks comments that adequately describe the class behavior,
which complicates program comprehension and evolution activities.

To handle these challenges, this paper investigates the different language-specific class commenting
practices of three programming languages: Python, Java, and Smalltalk. In particular, we systematically
analyze the similarities and differences of the information types found in class comments of projects
developed in these languages. We propose an approach that leverages two techniques - namely
Natural Language Processing and Text Analysis — to automatically identify class comment types, i.e.,
the specific types of semantic information found in class comments. To the best of our knowledge,
no previous work has provided a comprehensive taxonomy of class comment types for these three
programming languages with the help of a common automated approach.

Our results confirm that our approach can classify frequent class comment information types with
high accuracy for the Python, Java, and Smalltalk programming languages. We believe this work can
help in monitoring and assessing the quality and evolution of code comments in different programming

languages, and thus support maintenance and evolution tasks.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Software maintenance and evolution tasks require develop-
ers to perform program comprehension activities (Fjeldstad and
Hamlen, 1983; Haiduc et al.,, 2010). To understand a software
system, developers usually refer to the software documenta-
tion of the system (Bavota et al,, 2013; de Souza et al., 2005).
Previous studies have demonstrated that developers trust code
comments more than other forms of documentation when they
try to answer program comprehension questions (Maalej et al.,
2014; Woodfield et al., 1981; de Souza et al., 2005). In addition,
recent work has also demonstrated that “code documentation™ is
the most used source of information for bug fixing, implementing
features, communication, and even code review (Miiller and Fritz,

* Corresponding author.
E-mail addresses: pooja.rani@inf.unibe.ch (P. Rani), panc@zhaw.ch
(S. Panichella), manuel.Leuenberger@inf.unibe.ch (M. Leuenberger),
disorbo@unisannio.it (A. Di Sorbo), oscar.nierstrasz@inf.unibe.ch (O. Nierstrasz).

https://doi.org/10.1016/j.js5.2021.111047

2013). In particular, well-documented code simplifies software
maintenance activities, but many programmers often overlook or
delay code commenting tasks (Curiel and Collet, 2013).

Class comments play an important role in obtaining a high-
level overview of the classes in object-oriented languages (Cline,
2015). In particular, when applying code changes, developers
using object-oriented programming languages can inspect class
comments to achieve most or the majority of the high-level
insights about the software system design, which is critical for
program comprehension activities (Khamis et al., 2010; Nurvi-
tadhi et al., 2003; Steidl et al., 2013). Class comments contain
various types of information related to the usage of a class or
its implementation (Haouari et al., 2011), which can be useful for
other developers performing program comprehension (Woodfield
et al, 1981) and software maintenance tasks (de Souza et al.,
2005). Unfortunately, (i) different object-oriented programming
languages adopt language-specific code commenting notations
and guidelines (Farooq et al., 2015), (ii) they embed different
kinds of information in the comments (Scowen and Wichmann,

0164-1212/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

P. Rani, S. Panichella, M. Leuenberger, A. Sorbo, and O.
Nierstrasz. How to identify class comment types? A multi-
language approach for class comment classification, Journal

of Systems & Software, 2021

https://github.com/poojaruhal/RP-class-comment-classification.

Zurich University
of Applied Sciences

aw

b
UNIVERSITAT
BERN

Universita
degli Studi
del Sannio

b
UNIVERSITAT
BERN

https://github.com/poojaruhal/RP-class-comment-classification.

92

Do they follow the coding style guidelines?

93

Coding style guidlines

Each community has its own guidelines
%

.‘

Google M } Numpy
& Apache

PEP8/257

94

Coding style guidlines

—ach community has its own guidelines

Oracle

&
First sentence should summarise the class

Use phrases instead of complete sentences

The @deprecated description should tell
what to use as a replacement

95

Coding style guidlines

Each community has its own guidelines

)
|

;

() First sentence should summarise the class

Google MW Numpy () Use phrases instead of complete sentences
‘ Apache

" The @deprecated description should tell
PEPS8/257 what to use as a replacement

Comment related rules are hard to locate

96

Do developers follow comment conventions?

[* %

* A class representing a window on the screen.

*

* For example:

* <pre>

* Window win = new Window(parent); ki

* win.show(); '

* </pre> First sentence should summarise the class
*

* @author Sami Shaio Use phrases instead of complete sentences
* @version 1.13, 06/08/06

* @see Java.awt.BaseWindow The @deprecated description should tell
:/@See java.awt.Button what to use as a replacement

class Window extends BaseWindow {

}

97

Do developers follow comment conventions?

[* %
* A class representing a window on the screen.
*
* For example:
¢ cres Followed
* Window win = new Window(parent); éi
* win.show(); .
* </pre> & First sentence should summarise the class
*
* @author Sami Shaio
* @version 1.13, 06/08/06
* @see java.awt.BaseWindow
*

@see java.awt.Button
* /

class Window extends BaseWindow {

}

98

Do developers follow comment conventions?

[* %
* A class representing a window on the screen.
For example:
cores Not Followed
Window win = new Window(parent); éi
win.show(); .
</pre> & First sentence should summarise the class

dauthor Sami Shaio € Use phrases instead of complete sentences
@version 1.13, 06/08/06

@see java.awt.BaseWindow
@see java.awt.Button

¥ F ok Kk ok * * ¥ ok *

*/

class Window extends BaseWindow {

}

99

Do developers follow comment conventions?

[* %
* A class representing a window on the screen.
*
* For example: . .
¢ pres The rule I1s not applicable
* Window win = new Window(parent); ki
* win.show(); .
* </pre> & First sentence should summarise the class
*
* @author Sami Shaio € Use phrases instead of complete sentences
* @version 1.13, 06/08/06
* @see java.awt.BaseWindow @ The @deprecated description should tell
*

/@See java.awt.Button what to use as a replacement
*

class Window extends BaseWindow {

}

Do developers follow the style guidelines?

20 open-source projects

Java, Python, Smalltalk

1,245 class comment conventions

1,066 sample class comments

100

Do developers follow comment conventions?

Followed rules

Java 37%

101

Do developers follow comment conventions?

Followed rules © Not followed rules :: Not applicable rules

Java 37%, 60%

102

Do developers follow comment conventions?

Followed rules @ Not followed rules :: Not applicable rules

Java 37%, 29 60%

103

Do developers follow comment conventions?

Followed rules © Not followed rules :: Not applicable rules

Java 37%, 29 60%

Python 38% o o

104

Do developers follow comment conventions?

Followed rules @ Not followed rules # Not applicable rules

Java 37% 29 60%
Python 38% 7% 559
Smalltalk 31% 30% 40%

Developers do not always adopt conventions (not applicable rules)

Java developers violate rules less often than Python and Smalltalk

105

Do developers follow comment conventions?

Followed rules

Guice 53%
Guava 63%
S Hadoop 24%
= Spark 25%
Vaadin 32%
Eclipse 27%
Requests 38%
Pytorch 49%
é Pipenv 54%
E» Pandas 11%
Mailpile 47%
1Python 16%
Django 49%
Pharo 7 33%
 Pharo 6 30%
£ Pharo 5 32%
Tés Pharo 4 23%
“* " Pharo 3 29%
Pharo 2 28%
Pharo 1 38%

106

Do developers follow comment conventions?

Followed rules

Guice 53%
Guava 63%
S Hadoop 24%
= Spark 25%
Vaadin 32%
Eclipse 27%
Requests 38%
Pytorch 49%
é Pipenv 54%
E» Pandas 11%
Mailpile 47%
1Python 16%
Django 49%
Pharo 7 33%
 Pharo 6 30%
£ Pharo 5 32%
Tés Pharo 4 23%
“* " Pharo 3 29%
Pharo 2 28%
Pharo 1 38%

107

Do developers follow comment conventions?

Followed rules

Guice 53%
Guava 63%
S Hadoop 24%
= Spark 25%
Vaadin 32%
Eclipse 27%
Requests 38%
Pytorch 49%
é Pipenv 54%
E» Pandas 11%
Mailpile 47%
1Python 16%
Django 49%
Pharo 7 33%
 Pharo 6 30%
£ Pharo 5 32%
Tés Pharo 4 23%
“* " Pharo 3 29%
Pharo 2 28%
Pharo 1 38%

108

Do developers follow comment conventions?

Followed rules Not followed rules
Guice 53% 2%
Guava 63% 3%

‘§ Hadoop 24% 2%
= Spark 25% 2%

Vaadin 32% 3%

Eclipse 27% 3%

Requests 38% 12%

Pytorch 49% 10%
§ Pipenv 54% 6%
E Pandas 11% 3%

Mailpile 47% 10%

1Python 16% 2%

Django 49% 7%

Pharo 7 33% 26%
 Pharo 6 30% 25%
£ Pharo 5 32% 26%
Tg Pharo 4 23% 31%
" Pharo 3 29% 33%

Pharo 2 28% 32%

Pharo 1 38% 36%

109

110

Do developers follow comment conventions?

N
<
—

Python

Smalltalk

Guice
Guava
Hadoop
Spark
Vaadin
Eclipse

Requests
Pytorch
Pipenv
Pandas
Mailpile
1Python
Django

Pharo 7
Pharo 6
Pharo 5
Pharo 4
Pharo 3
Pharo 2
Pharo 1

Followed rules @ Not followed rules : Not applicable rules
53% 2% 45%
63% 3% 35%
24% 2% T4%
25% 2% 73%
32% 65%
LTt 3% 7%
38% 12% 50%
49% 10% 42%
54% 6% 40%
%30 86%
47% 10% 43%
165025 83%o
49% T% 44%
33% 26% 41%
30% 25% 45%
32% 26% 42%
23% 31% 46%
29% 33% 3T
28% 32% 40%
38% 36% 26%

111

Do developers follow comment conventions?

Java

Python

Smalltalk

Followed rules @ Not followed rules : Not applicable rules
Guice 53% 2% 45%
Guava 63% 3% 35%
Hadoop 24% 2% T4%
Spark 25% 2% 73%
Vaadin 32% 65%
Eclipse 27% 3% T0%
Requests 38% 12% 50%
Pytorch 49% 10% 42%
Pipenv 54% 6% 40%
Pandas 11% 3% 86%
Mailpile 47% 10% 43%
iPython 16% 2% 33%
Django 49% 7% 449
Pharo 7 33% 26% 41%
Pharo 6 30% 25% 45%
Pharo 5 32% 26% 42%
Pharo 4 23% 31% 46%
Pharo 3 29% 33% 37%
Pharo 2 28% 32% 40%
Pharo 1 38% 36% 26%

112

Do developers follow comment conventions?

Java

Python

Smalltalk

Followed rules @ Not followed rules : Not applicable rules
Guice 53% 2% 45%
Guava 63% 3% 35%
Hadoop 24% 2% T4%
Spark 25% 2% 73%
Vaadin 32% 65%
Eclipse 27% 3% T0%
Requests 38% 12% 50%
Pytorch 49% 10% 42%
Pipenv 54% 6% 40%
Pandas 11% 3% 86%
Mailpile 47% 10% 43%
iPython 16% 2% 33%
Django 49% 7% 449
Pharo 7 33% 26% 41%
Pharo 6 30% 25% 45%
Pharo 5 32% 26% 42%
Pharo 4 23% 31% 46%
Pharo 3 29% 33% 37%
Pharo 2 28% 32% 40%
Pharo 1 38% 36% 26%

113 Replication Package on
https://doi.org/10.5281/zen0d0.5296443

2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM)

Do Comments follow Commenting Conventions?
A Case Study in Java and Python

Pooja Rani*, Suada Abukar*, Nataliia Stulova*, Alexandre Bcrgelf, Oscar Nierstrasz*
*Software Composition Group, University of Bern, Bern, Switzerland
TDepartment of Computer Science (DCC), University of Chile, Santiago, Chile
@ scg.unibe.ch/staff

Abstract—Assessing code comment quality is known to be a
difficult problem. A number of coding style guidelines have
been created with the aim to encourage writing of informative,
readable, and consistent comments. However, it is not clear from
the research to date which specific aspects of comments the
guidelines cover (e.g., syntax, content, structure). Furthermore,
the extent to which developers follow these guidelines while
writing code comments is unknown.

We analyze various style guidelines in Java and Python and un-
cover that the majority of them address more the content aspect
of the comments rather than syntax or formatting. However,
when considering the different types of information developers
embed in comments and the concerns they raise on various online
platforms about the commenting practices, existing comment
conventions are not yet specified clearly enough, nor do they
adequately cover important concerns. We find that developers
of both languages follow the writing style and content-related
comment conventions more often than syntax and structure
types of conventions. Our results highlight the mismatch between
developer commenting practices and style guidelines, and provide
several focal points for the design and improvement of comment
quality checking tools.

Index Terms—Comment analysis, Software documentation, Cod-
ing Style Guidelines, Coding Standards

I. INTRODUCTION

Developers use several kinds of software documentation, in-
cluding design documents, wikis, and code comments, to un-
derstand and maintain programs. Studies show that developers
trust code comments more than other forms of documenta-
tion [1]. As code comments are usually written in a semi-
structured manner using natural language sentences, and they
are not checked by the compiler, developers have the freedom
to write comments in various ways [2], [3], [4].

To encourage developers to write consistent, readable, and
informative code comments, programming language commu-
nities and several large organizations, such as Google and
Apache, provide coding style guidelines that also suggest
comment-related conventions [5], [6], [7]. These conventions
cover various aspects of comments, such as syntactic, stylistic,
or content-related aspects. For instance, “Use 3rd person
(descriptive), not 2nd person (prescriptive)” is an example
of a stylistic comment convention for Java documentation
comments [5]. However, to what extent these aspects are
covered within different style guidelines and languages is not
known. Therefore, we formulate the question: RQ,: Which

978-1-6654-4897-0/21/$31.00 ©2021 IEEE
DOI 10.1109/SCAMS52516.2021.00028

P. Rani, S. Abukar, N. Stulova, A. Bergel, and O. Nierstrasz. Do
comments follow commenting conventions? A case study
in Java and Python, In Proceedings of 21st International

Working Conference on Source Code Analysis and
Manipulation (SCAM), 2021

Video on YouTube | &3
https://youtu.be/mX 9XxQTSxQ

type of comment conventions are suggested by various style
guidelines?

As high-quality comments support developers in understand-
ing and maintaining their programs, it is essential to ensure
the adherence of their comments to the style guidelines to
evaluate the overall comment quality. Rani ef al. have investi-
gated class comments of Smalltalk and their adherence to the
commenting conventions provided by a default template [8].
They found that Smalltalk developers follow writing style
and content-related comment conventions more than 50% of
the time, but they use inconsistent structure and formatting
of comment content. As Java and Python are among the
most popular languages in use, several research works have
focused on studying comments in Java and Python ([3], [4]),
some especially focusing on class comments [9]. However, it
remains largely unknown whether Java and Python developers
adhere to the commenting conventions suggested by the style
guidelines or not. To obtain this understanding, we formulate
another research question: RQ>: To what extent do developers
follow commenting conventions in writing code comments in
Java and Python?

Our initial results show that the majority of style guidelines
propose more content-related conventions than other types of
conventions, but compared to the different types of content
developers actually embed in comments ([3], [4], [9]), and the
concerns they raise on online platforms (e.g., StackOverflow
or Quora) regarding comment conventions [10], it is clear
that existing conventions are neither adequate, nor precise
enough. On the other hand, these style guidelines often include
conventions that are not relevant or applicable in many cases,
leading developers to ignore them.

When the conventions are applicable, developers often follow
the writing style and content conventions (80% of comments),
but violate structure conventions in Java and Python class
comments (nearly 30% of comments), confirming the previous
results for Smalltalk by Rani et al. [8]. Although the project-
specific guidelines provide very few additional class comment
conventions, these conventions are followed more often com-
pared to the conventions suggested by the standard guidelines
both in Java and Python class comments. The data related to
RQ; and RQ; is given in the replication package.'

Uhttps:/fdoi.org/10.528 1/zenodo. 5296443

b
UNIVERSITAT
BERN

b
UNIVERSITAT
BERN

https://doi.org/10.5281/zenodo.5296443
https://youtu.be/mX_9XxQTSxQ

We detine three perspectives

developer ‘

commenting practices
across languages m

114

We detine three perspectives

o —— pmanni
. — e
e R .
. gugv i
- ——
—— e
- N .
. — -
\ - —
" -
- e

115

P3: Questions developer ask

- oo
™ Lreent
~—— R
... -

e —
- | -
- . »
. . -
- o= .

N o
- -
. -
. -

-
e o
. o
»
" .
.
.
-
»
»
"
.

developer concerns
about comments

» .
o
p .
.
e .
e .
" -
- .
~
’ "-‘
. -
-
e -
- .
. .
- -
- -
L ————
- e
- - e
. ——ee
- -

116

Developer concerns about comments

Various syntax and structure conventions

Avallability of multiple style guidelines

Lack of tools to verity all aspects of comments

117

Developer concerns about comments

Various syntax and structure conventions

Availability of multiple style guidelines

Lack of tools to verity all aspects of comments

118

Developer concerns about comments

Various syntax and structure conventions

Avallability of multiple style guidelines

L ack of tools to verity all aspects of comments

119

Developer concerns about comments

Various syntax and structure conventions
Avallability of multiple style guidelines

Lack of tools to verity all aspects of comments

Ask questions on various online platforms

Stack Overflow Quora
@®

N\
Ask questions

121

Developer concerns about comments

Stack Overflow, Quora
23,631 comment related posts
1,400 sample posts
Automated analysis (LDA topic modelling)

Manual analysis

122

LDA Topic modelling

10 topics

Topic Name

1 Syntax and Format
"""""" 2 IDEs&Editors
"""""" 3 RDocumentaton
4 CodeConventions

123

...

5 Developing frameworks for thread commenting

LDA Topic modelling

H Topic Name

1 Syntax and Format

...

...

3 R Documentation
4 codeComventons
"""""" 5 Developing frameworks for thread commenting
"""""" 6 Open-sourcesoftware
"""""" 7 Documentationgemeraton
"""""" 8 Thread commentsinweb-sites
9 Namingconventions & datatypes

10 Seeking documentation & learning language

—xpected topics like Documentation Generation or Syntax and Format were
successftully identified by LDA.

124

LDA Topic modelling

H Topic Name

1 Syntax and Format

3 R Documentation
4 CodeComventions
5 %"'B;Q;'i;;;i}{;}};;{;;QJ;}R;};E"t'i{.};;};;;{;}}{éﬁ&'ﬁg ""
6 Opensourcesoftware
7 Documentationgemeraton
& Thread commentsinwebsites
9 Namingconventions & datatypes

10 Seeking documentation & learning language

Comment term is used in various contexts and environments

125

Manual analysis

st

ISENCN
L B
5 3
¥ S
o) <

) 2
O
Comment

2 2

Q
g concerns Q)
S >

Recommendation

126

\Y
= stackoverflow Products

127 Home Should JavaDoc go before or after a method-level annotation?

PUBLIC Asked 9 years, 2 months ago Active 9 years, 2 months ago Viewed 2k times

@ Questions ‘

https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation

&
9
~o
%)
¥
O~
“~

O
Q
AN

Comment
concerns

3
= stackoverflow Products

128 Home Should JavaDoc go before or after a method-level annotation?

PUBLIC Asked 9 years, 2 months ago Active 9 years, 2 months ago Viewed 2k times

@ Questions ‘

https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation

129

3
=" stackoverflow

Home

PUBLIC

@ Questions
Tags
Users

COLLECTIVES (i)

{33 Explore Collectives

Products

Should JavaDoc go before or after a method-level annotation?

Asked 9 years, 2 months ago Active 9 years, 2 months ago

What is the recommended place to put JavaDoc for a method with an annotation? Before or

4 after the annotation?

@Test

YESS

* My doc

*/

public void testMyTest(){

by

OR

/%%

* My doc

*/

@Test

public void testMyTest(){

by

java coding-style annotations

Viewed 2k times

Comment
concerns

2x
S,
2
<

S,
2
%
¢

https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation

3
= stackoverflow Products

Home Should JavaDoc go before or after a method-level annotation?
PUBLIC Asked 9 years, 2 months ago Active 9 years, 2 months ago Viewed 2k times
@ Questions ‘
Tags What is the recommended place to put JavaDoc for a method with an annotation? Before or
4 after the annotation?
Users
COLLECTIVES 0 @Test
/%%
Q Explore Collectives * My doc
*/
public void testMyTest(){
}
OR
/%%
* My doc
*/
@Test

public void testMyTest(){

} Comment

java coding-style annotations javadoc COncerns

| don't think it matters but second format is better. annotations are part of the code and play
crucial role per their usage pattern. Better to keep all code related entries together.

7 Recommendation

Share Edit Follow answered Nov 14 '12 at 18:12

130 ¥ Yogendra Singh :
V EXXW 32.8k 6 60 71

https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation

Developer concerns about comments

mmmmmmm
cccccccc

131

Developer concerns about comments

Implementation strategy

Best practice

%))

E Background information

fd

%)

qg’_ Limitation and possibility

©

* Implementation problem

=

= Opinion
Error

mmmmmmm

132

Developer concerns about comments

how to write/implement comments

Best practice

%))

E Background information

fd

%)

qg’_ Limitation and possibility

©

* Implementation problem

=

= Opinion
Error

mmmmmmm

133

Developer concerns about comments

Implementation strategy

Best practice

oé Background information
: s it possible to do this?
g Implementation problem
E Opinion
Error

mmmmmmm

134

Developer concerns about comments

Implementation strategy

Best practice

I
_
E Background information [
=
g_ Limitation and possibility [
g Implementation problem [
lg: Opinion [
Error [

0% 10% 20% 30% 40%

® % of question types

135

Developer concerns about comments

Implementation strategy

Best practice

I
_
E Background information [
=
g_ Limitation and possibility [
g Implementation problem [
lg: Opinion [
Error [

0% 10% 20% 30% 40%

® % of question types

Developers ask frequently “how to write comments?”

136

Developer concerns about comments

Implementation strategy

Best practice

I
_
E Background information [
=
g_ Limitation and possibility | [
g Implementation problem [
lg: Opinion [
Error [

0% 10% 20% 30% 40%

® % of question types

Followed by “is it possible” questions

137

Developer concerns about comments

Implementation strategy

Best practice

I
_
E Background information [
=
g_ Limitation and possibility [
g Implementation problem [
lg: Opinion [
Error [

0% 10% 20% 30% 40%

® % of question types

138

Developer concerns about comments

Implementation strategy

Best practice

%))
5 Background information
Z
3 Limitation and possibility
©
" Implementation problem
=
= Opinion

Error

0% 10% 20% 30% 40%
Stack Overflow Quora

139

Developer concerns about comments

Implementation strategy

Best practice

%))
5 Background information
Z
3 Limitation and possibility
©
" Implementation problem
=
= Opinion

Error

0% 10% 20% 30% 40%
Stack Overflow Quora

Developers prefer different sources to know different aspects of comments

140

Developer concerns about comments

Implementation strategy

Best practice

%))
5 Background information
Z
3 Limitation and possibility
©
" Implementation problem
=
= Opinion

Error

0% 10% 20% 30% 40%
Stack Overflow Quora

Developers prefer different sources to know different aspects of comments

141

Syntax and Format

Project documentation

Function documentation

Class documentation

—
Add tags
142 \

Add comments

Syntax and Format

Project documentation

Other

Function documentation

Inline comments

Class documentation Variable documentation

T
\

Add tags 11.5%

Add comments Blocks / Multiline

Developers want to improve Function documentation

143

144

Features asked

Add more information

Generate documentation

Add media
Add comments

Multi-lingual comments

0 % 5 % 10 % 15 %

% of posts asking for a feature

Adding information in comments

20 %

25 %

cccccccc

145

Features asked

Show comments NS
Render documentation I
Highlight comments I
Color scheme IS
0 % 5% 10 % 15 %

% of posts asking for a feature

Visualizing comments or part of comments

20 %

25%

cccccccc

Features asked

Synchronize code comment changes I
Detect undocumented code files N
Detect Todo comments I

0 % 5 % 10 % 15% 20 % 25 %

% of posts asking for a feature

Detecting inconsistent, incomplete, or missing comments comment N8

146

Features asked

Add more information

Generate documentation
Add media

Show comments

Other

Render documentation
Add comments
Multi-lingual comments
Ask for documentation

Synchronize code comment changes

Highlight comments
Color scheme

Detect undocumented code files

Detect Todo comments

Show inherited methods comments [l 4

%
0 % 5 % 10 % 15 % 20 % 25 % %

Comment
concerns

% of posts asking for a feature

147

Take-home messages

™ Prefer different sources to know different aspects.

& Confusion about how to write comments and use various comment
tools.

M Interest in embedding various information in comments but lack
conventions and tools to do it automatically.

148

Take-home messages

M Prefer different sources to know different aspects.

M Confusion about how to write comments and use
various comment tools.

M Interest in embedding various information in comments but lack
conventions and tools to do it automatically.

149

Take-home messages

M Prefer different sources to know different aspects.

& Confusion about how to write comments and use various comment
tools.

M Interest in embedding various information in
comments but lack conventions and tools to do It
automatically.

150

151

Replication Package on =888
https://doi.org/10.5281/zeno0d0.5044270

2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM)

What Do Developers Discuss about Code
Comments?

Pooja Rani*, Mathias Birrer*, Sebastiano Panichellat, Mohammad Ghafarii, Oscar Nierstrasz*

*Software Composition Group, University of Bern
Bern, Switzerland
@ scg.unibe.ch/staff
t Zurich University of Applied Science (ZHAW), Switzerland
panc @zhaw.ch
¥ University of Auckland, New Zealand
m.ghafari@auckland.ac.nz

Abstract—Code comments are important for program compre-
hension, development, and maintenance tasks. Given the varying
standards for code comments, and their unstructured or semi-
structured nature, developers get easily confused (especially
novice developers) about which convention(s) to follow, or what
tools to use while writing code documentation. Thus, they post
related questions on external online sources to seek better
commenting practices. In this paper, we analyze code comment
discussions on online sources such as Stack Overflow (SO) and
Quora to shed some light on the questions developers ask about
commenting practices. We apply Latent Dirichlet Allocation
(LDA) to identify emerging topics concerning code comments.
Then we manually analyze a statistically significant sample set
of posts to derive a taxonomy that provides an overview of the
developer questions about commenting practices.

Our results highlight that on SO nearly 40% of the questions
mention how to write or process comments in documentation
tools and environments, and nearly 20% of the questions are

about potential limitations and possibilities of documentation write and verify comments. b .
tools to add automatically and consistently more information . . . UNIVERSITAT
To resolve potential confusion, and to learn best commenting BERN

in comments. On the other hand, on Quora, developer questions
focus more on background information (35% of the questions)
or asking opinions (16% of the questions) about code comments.
We found that (i) not all aspects of comments are covered
in coding style guidelines, e.g., how to add a specific type of
information, (ii) developers need support in learning the syntax
and format conventions to add various types of information
in comments, and (iii) developers are interested in various
automated strategies for comments such as detection of bad
comments, or verify comment style automatically, but lack tool
support to do that.

Index Terms—Mining online sources, Stack Overflow, Quora,
Code Comment analysis, Software documentation

I. INTRODUCTION

Recent studies provide evidence that developers consider code
comments to be the most important type of documentation
for understanding code [1]. Code comments are written us-
ing natural language sentences, and their syntax is neither
imposed by a programming language’s grammar nor checked
by its compiler. Consequently, developers follow various con-
ventions in writing code comments [2]. These conventions

vary across development environments as developers embed
different kinds of information in different environments [3],
[4], [5]. This makes it hard to write, evaluate, and maintain
the quality of comments (especially for new developers) as the
software evolves [6], [7].

To help developers in writing readable, consistent, and main-
tainable comments, programming language communities, and
large organizations, such as Google and Apache Software
Foundation provide coding style guidelines that also include
comment conventions [8], [9], [10], [11]. However, the avail-
ability of multiple syntactic alternatives, the freedom to adopt
personalized style guidelines,! and the lack of tools for as-
sessing comments, make developers confused about which
commenting practice to adopt [6], or how to use a tool to

practices, developers post questions on various Q&A forums.
Stack Overflow (SO) is one of the most popular Q&A forums,
enabling developers to ask questions to experts and other
developers.? Barua et al. determined the relative popularity of
a topic across all SO posts and discovered the “coding style”
topic as the most popular [12]. Similarly, Quora® is another
widely adopted by developers to discuss software development
aspects [13]. However, what specific problems developers re-
port about code comments such as do they face challenges due
to multiple writing conventions or development environments,
or which commenting conventions experts recommend to them
on these sources, is unknown.

Therefore, we analyze commenting practices discussions on
SO and Quora, to shed light on these concerns. Particularly,
we formulate the following research questions:

1) RQ,: What high-level topics do developers discuss about
code comments? Our interest is to identify high-level

Mloh

]hllps:/Igil.hub. /povilasb/style- guid fepp.rst, accessed on Jun, 2021
2 https://www.stackoverflow.com

https:/iwww.quora.com

Zurich University
of Applied Sciences

zh
aw

THE UNIVERSITY OF

978-1-6654-4897-0/21/$31.00 ©2021 IEEE 153
DOI 10.1109/SCAMS52516.2021.00027

AUCKLAND

NEW ZEALAND

P. Rani, M. Birrer, S Panichella, M Ghafari, and O Nierstrasz.
What do developers discuss about code comments?, |In

Proceedings of 21st International Working Conference on b
Source Code Analysis and Manipulation (SCAM), 2021 bean T

Video on | &
https://youtu.be/EUQINZ38ziU

https://doi.org/10.5281/zenodo.5044270
https://youtu.be/EUQINZ38ziU

152 Replication Package on 1808
https://doi.org/10.5281/zen0d0.4434822

2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

Makar: A Framework for Multi-source Studies
based on Unstructured Data

Mathias Birrer*, Pooja Rani*, Sebastiano Panichellal, Oscar Nierstrasz*

*Software Composition Group, University of Bern
Bern, Switzerland
Q@ scg.unibe.ch/staff
t Zurich University of Applied Science (ZHAW)
panc @zhaw.ch

Abstract—To perform various development and maintenance
tasks, developers frequently seek information on various sources
such as mailing lists, Stack Overflow (SO), and Quora. Re-
searchers analyze these sources to understand developer infor-
mation needs in these tasks. However, extracting and prepro-
cessing unstructured data from various sources, building and
maintaining a reusable dataset is often a time-consuming and
iterative process. Additionally, the lack of tools for automating
this data analysis process complicates the task to reproduce
previous results or datasets.

To address these concerns we propose Makar, which provides
various data extraction and preprocessing methods to support
researchers in conducting reproducible multi-source studies. To
evaluate Makar, we conduct a case study that analyzes code
comment related discussions from SO, Quora, and mailing
lists. Our results show that Makar is helpful for preparing
reproducible datasets from multiple sources with little effort,
and for identifying the relevant data to answer specific research
questions in a shorter time compared to state-of-the-art tools,
which is of critical importance for studies based on unstructured
data. Tool webpage: https://github.com/maethub/makar

Index Terms—Mining developer sources, Code comments, Stack
Overflow, Mailing lists

I. INTRODUCTION

As a software system continues to evolve, it becomes bigger
and more complex, and developers need various kinds of
information to perform activities such as adding features, or
performing corrective maintenance [1]. Developers typically
seek information on internal (available within IDE) or exter-
nal sources such as Q&A forums,! Github? to satisfy their
information needs as shown in Figure 1 [2].

To support developers in various activities and understand their
information needs, researchers have analyzed these external
sources such as Github, CVS, mailing lists, and CQA sites [3]
(see Figure 1). However, extracting and preprocessing unstruc-
tured data from these sources, and maintaining the data due

We gratefully acknowledge the financial support of the Swiss National
Science Foundation for the project “Agile Software Assistance” (SNSF project
No. 200020-181973, Feb. 1, 2019 - April 30, 2022).

' www.stackoverflow.com

Zhttps://github.com/

Previous Projects Source Code Run Environment Logs
Documentation Tests Error Messages

Internal Sources

Clients Q&A Sites Bug Reports
Stakeholders Mailing Lists Tool Documentation User Reviews
Version contral systems
External Sources Peers
Fig. 1. Developers seek various sources during software development

to lack of automated techniques pose various challenges in
conducting reproducible studies [4], [S], [3]. To gain a deeper
understanding of these challenges, we surveyed the literature
that focuses on studying developers information needs from
different external sources (see section II).

Prior works have raised and identified the crucial factors
affecting the reproducibility of the mining studies such as
data retrieval methodology, data processing steps, or dataset
availability [6], [S], [4]. Chen et al. pointed out that 50% of
articles do not report whether word stemming, a common text
preprocessing step, is used or not [4]. Amann et al. pointed
out that only 29% of the mining studies made their dataset
available [5]. As a consequence, more tools and techniques
are required to enable the preprocessing and analysis of multi-
source studies to facilitate their replicability.

To address these concerns, we propose Makar, a tool that
leverages popular data retrieval, processing, and handling
techniques to support researchers in conducting reproducible
studies. We establish its requirements based on the surveyed
studies. To evaluate Makar, we conduct a case study that
analyzes code comment related discussions from SO, Quora,
and mailing lists. Thus the contribution of this paper is three-
fold:

« We present the challenges researchers face in mining and
analyzing the unstructured data from the external sources.

« We present Makar, a tool to support researchers in con-
ducting multi-source and reproducible empirical studies.

« We report the state-of-art tools comparison to Makar.

978-1-7281-9630-5/21/$31.00 ©2021 European Union 577
DOI 10.1109/SANER50967.2021.00069

P. Rani, M. Birrer, S. Panichella, and O. Nierstrasz. Makar: A
Framework for Multi-source Studies based on Unstructured
Data, In proceedings of IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2021

Video on | &
https://youtu.be/Yqgj1b4Bv-58

b
UNIVERSITAT
BERN

Zurich University
of Applied Sciences

zh
aw

b
UNIVERSITAT
BERN

Hosted on
https://qgithub.com/maethub/makar

https://doi.org/10.5281/zenodo.4434822
https://youtu.be/Yqj1b4Bv-58
https://github.com/maethub/makar

= 16 different types o

Recu

Deve

Conclusions

rent patterns

153

® Studies focus on Java

= 21 quality attributes for comments

® Many attributes are assessed manually

developer commenting
practices
across languages

- Information in class comments

nelp in identifying information

opers do not adopt various conventions

academic support

B

developer concerns about
comments

y

® Add more information to comments
® \Isuallze comments
® Detect inconsistent, incomplete, missing comments

Future work

¢ Assessing specific required information from comments

154

Assessing specific required information

Quality attributes

Accessibility ‘

Readability =g
Author-related =)
Correctness —‘

Completeness ‘

Consistency =g

/x* | | Information
* A class representing a window on the screen.
* Summary
* For example:
* <pre>
* Window win = new Window(parent);
* win.show();
* </pre> Usage
*
* @author Sami Shaio
* @version 1.13, 06/08/06
* @see java.awt.BaseWindow
* @see java.awt.Button Point
x / ointer
class Window extends BaseWindow {
}
Task
Audience

Design Implementation Maintenance

User Developer

155

€C

€C

Future work

Visualizing documentation effort

156

Visualizing documentation effort

Visualizing a project hierarchy for documentation effort

157

Visualizing documentation effort

158

Visualizing a project hierarchy for documentation effort

€C

€C

€C

Future work

Analyz|
yzing support of documentation tools to comment
S

159

“€C

“€C

“€C

“€C

Future work

Speculative Analysis of comment quality

160

€C

€C

€C

Future work

Assessing specific required information from comments
Visualizing commenting effort
Analyzing support of documentation tools to comments

Speculative Analysis of comment quality

101

Summary

Code comments

N I B R R

*

*

A class representing a window on the screen.

For example:

<pre>
Window win = new Window(parent);
win.show();

</pre>

fauthor Sami Shaio
@version 1.13, 06/08/06
@see java.awt.BaseWindow
@see java.awt.Button

*/
class Window extends BaseWindow {

}

Trustworthy form of documentation

High-quality comments support developers

Challenges

No standard definition of comment quality
No strict syntax and structure conventions

Lack of quality assessment tools

All these makes quality assessment a non-trivial problem

We define three perspectives

academic support
7 N
P1
developer

commenting practices
across languages m P3

developer concerns
about comments

i Wi

«r}k Techniques

39

Quality attributes

Techniques

Consistency
—
— X ~
~ —
Accuracy - > ML-based
NN \\
Roadabiiity =N
oadal
I N
N N Ny Heurfstic-based
I Up-todate-ness \ :

I Content relevance

I Maintainability
l Spelling and grammar o
—
-
I Conclseness

I Usabllity

| Coherence
m Format

m Information organizatio
m Understandabilty

14
—NaiveBayes —J48 —RandomForest ~—NaiveBayes —J48 — RandomForest —NaiveBayes —J48 —RandomForest
74 N //7““'--.,
T —
s —= — i V'
\/
=]
=
>
8
g3
-
=)
o
b «
¢ ¥ ¢ £ § § ¢ £ £ £ ¢ ¢ § £ 2 F 2 % %
g B 2 2 & 3 Z H = g S £ - 3 E 3 z =
g & § 5 ° ¢ g g ° 2 2 £ : * B 2 5 £ 8
Z. = & < 3 g 5 2 2 g 8 8
g g
Top categories in Java comments Top categories in Python comments Top categories in Smalltalk comments -
Random Forest technique classifies comments better
76

Future work

¢ Assessing specific required information from comments

¢ Visualizing commenting effort

¢ Anlyzing support of documentation tools to comments

¢ Speculative Analysis of comment quality

161

162

16¢

Ihank you

—Pooja Rani

Backup slides

Python class comments

class OneHotCategorical(Distribution):

r
Creates a one-hot categorical distribution parameterized by :attr: probs or

;attr: logits .
Samples are one-hot coded vectors of size " “probs.size(-1) .

. hote:: The "probs argument must be non-negative, finite and have a non-zero sum,
and it will be normalized to sum to 1 along the last dimension. :attr: probs’
will return this normalized value.

The "logits argument will be interpreted as unnormalized log probabilities
and can therefore be any real number. It will likewise be normalized so that
the resulting probabilities sum to 1 along the last dimension. :attr: logits
will return this normalized value.

See also: :func: torch.distributions.Categorical for specifications of
:attr: probs and :attr: logits .

Example: :

>>> m = OneHotCategorical(torch.tensor([0.25, 0.25, 0.25, 0.25]))
>>> m.sample() # equal probability of o, 1, 2, 3
tensor([0., 0., 0., 1.])

Args:
probs (Tensor): event probabilities
logits (Tensor): event log probabilities (unnormalized)

165

Summary

Expand

Development notes,
Warnings

§Ljnks

Usage

Parameters

Comments of multi-languages

():
r‘II mn
Creates a one-hot categorical distribution parameterized by :attr: probs’ or

rattr: logits .
Samples are one-hot coded vectors of size "~ “probs.size(-1) .

note:: Tha ~nrnhc® arcoiimoant miic+t ha nAan_-noaoativao finitoa Aand hawvwia A nAan_-7o0rn _ciim
o ¢

7 Comment X + @& »

I represent a message to be scheduled by the WorldState.

see 21c. | FOr example, you can see me in action with the following example which print 'alarm test' on Transcript
@ttt one second after evaluating the code:

Example::

>>> 1 Transcript open.

tensc MorphicUIManager currentWorld
Arge: addAlarm: #show:

ﬁgﬁ withArguments: #('alarm test')
h for: Transcript

at: (Time millisecondClockValue + 1000).

* Note x
Compared to doing:
[(Delay forMilliseconds: 1000) wait. Transcript show: 'alarm test'] forkAt: Processor activeProcess

priority +1.

the alarm system has several distinctions:

- Runs with the step refresh rate resolution.

- Alarms only run for the active world. (Unless a non-standard scheduler is 1in use)

- Alarms with the same scheduled time are guaranteed to be executed in the order they were added

Smalltalk class comment
106

167

Thesis statement

‘Understanding the specification of high-quality comments to
build effective assessment tools requires a multi-perspective
view of the comments. The view can be approached by
analysing (P1) the academic support for comment quality
assessment, (P2) developer commenting practices across
languages, and (P3) their concerns about comments.”

P1: academic support

- _academic support

168

CORE
2020

169

Methodology

195

venues

2 oy

relevant
venues

332
proceedings

-~ -
~ -
- -

-~ -
~ - -

-
-~ -
~ - -
~ -
- -
-~

keyword-based !
publication filtering :

potentail
papers

_ filtering
® by title and
" abstract

candidate
papers

-
-~ -
-~ -
-~ -
~ -
-~ -
-~ -
-~ -
-~ -
~ - -
-

~ - -
~ - -
-~ -
-~ -
-~ -
~ -
~ -
~ -~ -
-~ -
-

30 initial papers

Methodology
3

O a i e 2 6] I
195 2
CORE relevant 33 ,
2020 venues enues proceedings
___/ I | I 1 l |
keyvs;;)Id;i)ased

publication filtering

———————————————————

~ filtering
potentail by titleand candidate
papers /' abstract papers

\

30 initial papers n » backward

4
4

—————————————————————

170

Methodology

CORE 195
2020 venues

26

relevant 332
venues

proceedings ”

keng)yci:based
publication filtering

2,043 . filtering 71
potentail sbytitleand candidate
papers /. abstract papers

filtering by full text 0
~.-—"_’—— ‘-\ -------------------- __

.. forward and 3,704

30 initial papers » backward | wunique

q I,'I snowball K papers
keyw&ci:based

publication filtering

- 039 I
potentially ﬁlFerlng \ new
relevant by title and I," candidate
__papers /abstract | papers

filtering by
full text |

18 snowballed papers

48 papers

171 | -

10

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

48 papers over years

172

173

i1,

Comment types

~
11111}

Quality attributes

Techniques

Data availability

Dimensions analyzed

method comments, inline comments

consistency, completeness

heuristic-based, machine learning-based

tool, dataset

Data availability

Nearly 50% of the studies still lack in the replicability
dimension, as their respective dataset or tool is often
not publicly accessible.

174

Comments analyzed of languages

90%
68%

45%

% of total studies (48)

23%

15%
. = 1

Java Python C+ Other

0%

175

Comments analyzed of languages

[]

90%

68%

45%

% of total studies (48)

23%

15%
. = 1

Java Python C++ Other

0%

176

P2: class commenting practices

- i v
- -l
— Y o .
———ey. 4
- .
- | -
> »
. -
- ——
\ o
.
. o
-
e -
p
"
.
.
”
~

developer
commenting practices

across languages m

177

Comment taxonomies in Java and Python

Java

Summary

Expand

Pointer

Rationale

Usage

Deprecation

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

Classifying code comments
in Java open-source software systems

Luca Pascarella
Delft University of Technology
Delft, The Netherlands
L.Pascarella@tudelft.nl

Abstract—Code comments are a key software component
containing information about the underlying implementation.
Several studies have shown that code comments enhance the
readability of the code. Nevertheless, not all the comments have
the same goal and target audience. In this paper, we investigate
how six diverse Java OSS projects use code comments, with the
aim of understanding their purpose. Through our analysis, we
produce a taxonomy of source code comments; subsequently, we
investigate how often each category occur by manually classify-
ing more than 2,000 code comments from the aforementioned
projects. In addition, we conduct an initial evaluation on how
to automatically classify code comments at line level into our
taxonomy using machine learning; initial results are promising
and suggest that an accurate classification is within reach.

I. INTRODUCTION
While writing and reading source code, software engineers

Alberto Bacchelli
Delft University of Technology
Delft, The Netherlands
A.Bacchelli @tudelft.nl

Haouari et al. [11] and Steidl et al. [28] presented the ear-
liest and most significant results in comments’ classification.
Haouari et al. investigated developers’ commenting habits, fo-
cusing on the position of comments with respect to source code
and proposing an initial taxonomy that includes four high-
level categories [11]; Steidl et al. proposed a semi-automated
approach for the quantitative and qualitative evaluation of
comment quality, based on classifying comments in seven
high-level categories [28]. In spite of the innovative techniques
they proposed to both understanding developers’ commenting
habits and assessing comments’ quality, the classification of
comments was not in their primary focus.

In this paper, we focus on increasing our empirical under-
standing of the types of comments that developers write in
source code files. This is a kev step to guide future research

R

Pascarella et al., 2017

Classifying Python Code Comments
Based on Supervised Learning

Jingyi Zhang', Lei Xu?(®™) and Yanhui Li?

! School of Management and Engineering, Nanjing University,
Nanjing, Jiangsu, China
jyzhangchn@outlook.com
2 Department of Computer Science and Technology, Nanjing University,
Nanjing, Jiangsu, China
{xlei,yanhuili}@nju.edu.cn

Abstract. Code comments can provide a great data source for under-
standing programmer’s needs and underlying implementation. Previous
work has illustrated that code comments enhance the reliability and
maintainability of the code, and engineers use them to interpret their
code as well as help other developers understand the code intention
better. In this paper, we studied comments from 7 python open source
projects and contrived a taxonomy through an iterative process. To clar-
ify comments characteristics, we deploy an effective and automated app-
roach using supervised learning algorithms to classify code comments
according to their different intentions. With our study, we find that
there does exist a pattern across different python projects: Summary
covers about 75% of comments. Finally, we conduct an evaluation on the
behaviors of two different supervised learning classifiers and find that
Decision Tree classifier is more effective on accuracy and runtime than
Naive Bayes classifier in our research.

/hang et al., 2018

Python

Summary

Expand

Links

Development notes

Usage

17 types of information in
code comments

11 types of information in
code comments

178

Pascarella et. al., 2017

179

Java

Summary

Expand

Pointer

Rationale

Usage

Deprecation

Unmapped

Under Development
Ownership
License
Autogenerated
Directive
Formatter
Incomplete

Noise

Todo

Commented code
Exception

Smalltalk taxonomy

Smalltalk

Intent

Responsibility I

Collaborators I

Key Messages I

Key Implementation Point |
Warnings i
Examples B

Class References B

Instance Variables g

ReferenceToOtherResource g

Preconditions o
Recommedation

Subclasses Explanation .
Links =

Other -
License/Copyright .
Extension
Observation _
Discourse _
Dependencies _
Todo _

Coding Guidelines _
Unmapped

CCTM

/hang et. al., 2018

Python

Summary

Expand

Links

Development Notes

Usage
Unmapped

Parameters

Version

Metadata

Noise

Todo
Exception

Pascarella et al., 2017 Smalltalk taxonomy /hang et al., 2018

Java Smalltalk Python
Intent
Summary
Responsibility I
Summary
| Expand Collaborator I
Key message I
I Pointer Key implementation point] Sszeue I
_ Warning i :
I Rationale Links I
Example j
I Usage - Class reference g Development notes I
" ~S—— ~ Instance variable 5
0 . b ReferenceOtherResource - Usage g
m -NMmappe ~ Precondition . / U d
__Under development . ~ nmappea g
Ownership Recommedation. .
" License Subclass explanation warameters g
_ Auto generated b Links o . \Version..g
_ Directive Other _ Metadata _
_ Formatter License _ ~ Noise
_ Incomplete Extension _ Todo _
_ Noise) Observation _ Exception
~ Todo Discourse _
— Commented code Dependenc
_ Exception Todg B
Coding-guideline _
180 Unmapped _

CCTM

Information types

Projects 2 o 5 =
=y S >S5 § v g = 2 03 S
2 < .E O &0 S & O ‘g 2 O
181 28238383 §2S8S2 53 R ETE
S 5 5 8 & & AE el eSS = o O S O =
D OO >Tnm LA A = A CRN-AP=N---¥
Java Projects Python Projects Smalltalk Projects

Information types

Projects 2 o 5 =
=y S >S5 § v g = 2 o= S
2 <|.E|S &0 S & O ‘g 2 O
te2 £5E515 ISR N
86 0> & QA T2 SR L
Java Projects Python Projects Smalltalk Projects

Information types

Projects 2 o 5 =
=y S >S5 § v g = 2 o= S
O < .2| o o= = 2.8 8 a 2 2
183 £25E|5[E E2EEEET 8% %53z
SRR L SRR S
Java Projects Python Projects Smalltalk Projects

NEON to extract patterns

TRAINING PHASE TESTING PHASE

Patterns Finder Tagger

® -——@

oo New Software
/ | Artifacts
Software Artifacts @

N
© (ot ——

NLP Rules

Tagged Artifacts

T S
O,

Training: software artifact (classified Testing: the inferred rules are leverage
comments of each category in our case) to recognise the information of interest
IS Inspected to identify recurrent NL IN a different corpus.

patterns.

Neon on G1|t§I4ub
https://qgithub.com/adisorbo/NEON tool

Example patterns from comments

[* %

*A class representing a window on the screen. Summary Class represents [something]
*

<NLP_heuristic>
<sentence type="declarative'/>
<type>nsubj/dobj</type>
<text>Class represents [something].</text>
<conditions>
<condition>nsubj.governor="represent'</condition>
<condition>nsubj.dependent="class"</condition>
<condition>nsubj.governor=dobj.governor</condition>
</conditions>
<sentence_class>summary</sentence_class>
</NLP_heuristic>

class Window extends BaseWindow{

}

185

Do they follow the coding style guidelines?

186

187

Methodology

s Y Y s
Java - g fye! T

|dentify Create Select Measure
rules taxonomy comments adherence

2 3 4 5

Extract
guidelines

1

188

1 Extract guidelines

Q—-—’)
e
Q:/___/

Java

Apache Hadoop
Apache Spark
Eclipse.cdt
Vaadin

Google Guava

Google Guice

Oracle
Style Guide

Google
Style Guide

= Phar(®

Django Pharo 1 g Template v1
Pipenv Pharo 2
— Template v2
Mailpile Pharo 3
Requests Pharo 4 é Template v3
Python Pharo 5
Numpy
Pandas Pharo 6 ; lemplate v4
PyTorch | 2909l

Pharo 7

Pharo 7 lemplate

! Comment X + &5

Please comment me using the following template inspired by Class Responsibility Collaborator (CRC)
design:

For the Class part: State a one line summary. For example, "I represent a paragraph of text".
For the Responsibility part: Three sentences about my main responsibilities - what I do, what I know.
For the Collaborators Part: State my main collaborators and one line about how I interact with them.
Public API and Key Messages
- message one
- message two
- (for bonus points) how to create instances.

One simple example is simply gorgeous.
Internal Representation and Key Implementation Points.

Instance Variables

environmentDictionaries: <Object>

Implementation Points

189

190

2 |dentify rules

Multi-line Docstrings

Multi-line docstrings consists of a summary line just like a one-line docstrings, followed

by a blank line, followed by a more elaborate description. The summary line may be used by

automatic indexing tools; it 1s important that fits on one line and 1s separated from the

rest of the docstring by a blank line. The summary line may be on the same line as the

opening quotes or on the next line. The entire doctoring is intended the same as the

guotes at its first time.

Comment conventions in Python PEP 257 Docstring conventions [https://www.python.org/dev/peps/pep-0257/]

191

2 Create taxonomy

Content Format

Multi-line Docstrings

Multi-line docstrings consists of a summary line just like a one-1line docstrings, followed

by a blank line, followed by a more elaborate description. The summary line may be used by

automatic indexing tools; it is important that fits on one line and 1s separated from the

rest of the docstring by a blank line. The summary line may be on the same line as the

opening quotes or on the next line. The entire doctoring is intended the same as the

guotes at its first time.

Comment conventions in Python PEP 257 Docstring conventions [https://www.python.org/dev/peps/pep-0257/]

192

Oracle (94)
Google (13)
Spark* (125)
Eclipse* (97)
Hadoop* (97)
Vaadin* (95)
Guava (13)
Guice (13)

Numpy (76)
Google (21)
PEP8/257 (29)
Pandas* (170)
iPython* (107)
Pytorch* (33)
Django* (39)
Requests* (37)
Pipenv (29)
Mailpile (29)

Pharo 1 (9)
Pharo 2 (9)
Pharo 3 (9)
Pharo 4 (26)
Pharo 5 (25)
Pharo 6 (25)
Pharo 7 (25)

OFormat OContent OSyntax OStructure B Writing style Other
13% 41% 24% 16% 5%
23% 23% 15% 15% 23%

12% 42% 26% 14% 6%
13% 41% 25% 15% 5%
13% 42% 24% 15% 5%
14% 41% 24% 16% 5%

23% 23% 15% 15% 23%
23% 23% 15% 15% 23%
Percentage of class comment conventions in Java
14% 41% 34% 8% |IPh
29% 14% 14% 14% 29%
38% 21% 7% 17% 17%

11% 38% 32% 5% 12% B%
21% 35% 26% 10% | 7% 1
36% 12% 18% 12% 21%

38% 23% 8% 13% 18%
41% 19% 8% 14% 19%
38% 21% 7% 17% 17%
38% 21% 7% 17% 17%
Percentage of class comment conventions in Python
33% 44% 11% 11%
22% 44% 11% 22%
22% 44% 11% 22%
27% 35% 4% 35%
28% 32% 4% 36%
28% 40% 4% 28%
28% 32% 4% 36%

Percentage of class comment conventions in Smalltalk

comments or part of comments

547 rules

570 rules

128 rules

Content rules are more prevalent in style guidelines but hard to locate

° Measure adherence

1. 006 class 1. 245 class comment
o' o
comments guidelines

_/

193

Do developers follow conventions”?

Java Content © Structure = Syntax & Writing style
100%
80%
60%
40%
20%
Eclipse Hadoop Spark Vaadin Guava Guice Eclipse Hadoop Spark Vaadin Guava Guice
Types of rules followed Types of rules not followed

194

Do developers follow conventions”?

Python Content Structure Syntax ® Writing style
100%

80%
60%
40%
20%

Django 1Python Mailpile Pandas Pipenv Pytorch Requests Django 1Python Mailpile Pandas Pipenv Pytorch Requests

Types of rules followed Types of rules not followed

In Java and Python, comment follow content and writing style conventions.
195

Do developers follow conventions”?

Smalltalk Content Structure Syntax & Writing style
100%

80%
60%
40%

20%

Pharol Pharo2 Pharo3 Pharo4 Pharo5 Pharo6 Pharo7 Pharol Pharo2 Pharo3 Pharo4 Pharo5 Pharo6 Pharo7

Types of rules followed Types of rules not followed

In Smalltalk, comments follow structure and writing style conventions
196

Do developers follow conventions”?

Smalltalk Content Structure Syntax & Writing style
100%

80%
60%
40%

20%

Pharol Pharo2 Pharo3 Pharo4 Pharo5 Pharo6 Pharo7 Pharol Pharo2 Pharo3 Pharo4 Pharo5 Pharo6 Pharo7

Types of rules followed Types of rules not followed

In Java and Python, every third comment violate structure conventions.
In Smalltalk, every third comment violate content conventions

197

Future work

Verity other types of comments (Method, inline comments)
Verity comments of other languages (C++, JavaScript)
Develop tools to validate comments against the guidelines

Improve comment quality assessment

198

P3: Questions developer ask

- oo
™ Lreent
~—— R
... -

e —
- | -
- . »
. . -
- o= .

N o
- -
. -
. -

-
e o
. o
»
" .
.
.
-
»
»
"
.

developer concerns
about comments

» .
o
p .
.
e .
e .
" -
- .
~
’ "-‘
. -
-
e -
- .
. .
- -
- -
L ————
- e
- - e
. ——ee
- -

199

Developer concerns about comments

\
k
o0 e
— > o . o jj 2}
O . 2 &
4' Extract |dentify Manual Create Validate
/ posts topics (LDA) analysis taxonomy posts
@ = 2 3 4 5 0
|dentify tags
& topics

Sources

200

2 Extract posts

Stack Overtlow 19, 700

Quora 3. 671

201

3 LDA Topic modelling

L DA Technical Details

* Stack overflow posts: 19, 705
e MALLET
* Topics k=10

* Hyperparameters
*a=5
« =0.01

202

3 LDA Topic modelling

H Topic Name

1 Syntax & Format

...
...
...
...
...
...
...
...

...

10 Seeking documentation & learning language

203

4 Manual analysis

st

ISENCN
L B
5 3
¥ S
o) <

) 2
O
Comment

2 2

Q
g concerns Q)
S >

Recommendation

204

205

5 Taxonomy

2014 IEEE International Conference on Software Maintenance and Evolution

A Manual Categorization of Android App
Development Issues on Stack Overflow

Stefanie Beyer
Software Engineering Research Group
University of Klagenfurt
Klagenfurt, Austria
Email: stefanie.beyer@aau.at

Martin Pinzger
Software Engineering Research Group
University of Klagenfurt
Klagenfurt, Austria
Email: martin.pinzger @aau.at

First
Dimension

Implementation How to use @value tag in Javadoc
strategies

Implementation The command does not work

Best Practice

problems

Error Contau.vs an error message from the
exception
Limitation & Is there a keyboard shortcut for block
Possibilities = comments?
Background ypy is # usually introduces a comment?
Information

What is the proper way to reference a
element in Android comments?
Opinion Are comments in code a good or bad
thing?

2
$
~
A
2
N
O
S
¢, Comment
& concerns

AN

206

5 Taxonomy

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

Software Documentation Issues Unveiled

Emad Aghajani*, Csaba Nagy*, Olga Lucero Vega-Marquez'

Mario Linares-VésquezT, Laura Moreno?, Gabriele Bavota*, Michele Lanza*
*Software Institute, Universita della Svizzera italiana (USI), Switzerland
TSystems and Computing Engineering Department, Universidad de los Andes, Colombia
1Department of Computer Science, Colorado State University, USA

Second Dimension - Level 2

——— Syntax & format

Second Dimension - Level 1

Commenting high levels

Development environment

e Languages
e IDEs & Editors
e Documentation Tools

Using features

Maintain
comments

Understand

documentation

Process comments

Change comment

template

Asking for features

2
0.
2,
.
@
O

Comment
concerns

%
Q,
&

5 Taxonomy

[.net] long inline comments should start with a capital letter and end with a period.

Comment
concerns

Recommendation
207

3
= stackoverflow Products

Home Should JavaDoc go before or after a method-level annotation?

PUBLIC Asked 9 years, 2 months ago Active 9 years, 2 months ago Viewed 2k times

© Questions Best Practice
Tags What is the recommended place to put JavaDoc for a method with an annotation? Before or

’ after the annotation?
users

@Test

Explore Collectives
public void ()4

}

OR

@Test
public void ()4

by

| don't think it matters but second format is better. annotations are part of the code and play
crucial role per their usage pattern. Better to keep all code related entries together.

&
9
~o
%)
¥
O~
%~

O
Q
AN

Comment
concerns

208

https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation

stackoverflow

Should JavaDoc go before or after a method-level annotation?

9 years, 2 months ago 9 years, 2 months ago 2k times

@ Questions

Tags What is the recommended place to put JavaDoc for a method with an annotation? Before or
after the annotation? TOOl

sers

Use
Vo

@Test

[bp\cwe Collectives /:*My doc SyntaX and Format
*/
public void testMyTest(){

y Function comments

OR

/%%
* My doc
*/
@Test
public void testMyTest(){

by

java coding-style annotations javadoc

| don't think it matters but second format is better. annotations are part of the code and play
crucial role per their usage pattern. Better to keep all code related entries together.

Pt
Do
C.
%.
%
Comment %
concerns ®
%

209

https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation

210

[Javadoc]| Write annotations after the Javadoc of
the method and before the method definition

Comment
concerns

Recommendation

https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation
https://stackoverflow.com/questions/13384694/should-javadoc-go-before-or-after-a-method-level-annotation

5 [axonomy

—— ———

%
S
- S 0 -
[/ categories S % O categories
Q
S %

& > 30 sub categories
Comment

®
concerns O
K0

2
Q
N

Recommendation

40 comment conventions

211

Developer concerns about comments

Implementation strategy

Best practice

I
_
E Background information [
=
g_ Limitation and possibility [
g Implementation problem [
lg: Opinion [
Error [

0% 10% 20% 30% 40%

® % of question types

mmmmmmm

212

213

Developer concerns about comments

Types of questions

Implementation strategy
Best practice
Background information
Limitation and possibility

Implementation problem

Opinion
Error]

0% 10%

B Commenting high levels

20%

Programming languages

30% 40%
Tools ®m IDEs and editors ®m Other

nnnnnnnn

Developer concerns about comments

Implementation strategy

Best practice

n
_5 Background information
%
3 Limitation and possibility
©
- Implementation problem
=
~ Opinion
Error i
0% 10% 20% 30% 40%

® Commenting high levels = Programming languages IDEs and editors ® Other

Developers gets confused on how to write comments using various tools

214

Future work

Improve documentation of tools and availability of coding style
guidelines

Investigate more sources (e.q., GitHub, Jira, Mailing lists)

Survey developers to know which concerns are more important
than others

Veritying the tool support for these concerns

215

216

Makar: A tool for Multi-source Studies

</>
T o
o

Planning \

Testing

Implementation ﬁ
=

Extracting

@,

a0
OQ

&
Y & @

https://github.com/maethub/makar

Makar Architecture

‘@ ®>#

docker
@ User connects

& Web Application
=

2 BE 0)) Preprocessing 2.' //(' | == sk

v v v v
fmport Transformations Data Export
Adapters Management Adapters

User-defined Data Models

217

https://github.com/maethub/makar

Case Study

Import adapters: Stack overflow, CSV, Apache mailing list

Preprocess the data:

Transformation extract_code strip _html string_replace remove_stopwords word_stemming
-) :) : - Question | Body - Question | Body - Question | Body
LR Question | Body Question | Body - Question | Title - Question | Title - Question | Title

218

Case Study

Import adapters: Stack overflow, CSV, Apache mailing list

Preprocess the data:

Transformation extract_code strip _html string_replace remove_stopwords word_stemming
-) :) : - Question | Body - Question | Body - Question | Body
LR Question | Body Question | Body - Question | Title - Question | Title - Question | Title

Export adapters: CSV adapters

219

Features

Extract data from different sources

Support mapping and processing the data
Explore and perform ad-hoc searches

Extending the dataset easily

220

Data sources

Java
_/-\

Smalltalk
_/-\

Classification

Validation

Taxonomy

221

Data Selection

Python
L i&

20
projects

- B 5 E

37,446 1,066
class comments comments

<

Evaluate assigned comments l ‘ l ‘

&

Review others
classification

—
b

\

Evaluator accept/reject
reviews

eos A% A%

conflicts

L
a8

Mapped
taxonomies

&

yylivylivs!

Class Comment Type Model
(CCTM)

222

Validation

Java Python Smalltalk

7 S 7
6 projects 7 projects 7 projects
Identify the style guidelines IF IF IF
¢ 376 comments 349 comments 364 comments

Extract comment conventions

v

Formulate rules & categorize them

v

Evaluate assigned comments or

conventions
Review others' Evaluator accept or reject
classification reviews
= 1SCusS
conflicts

!

Analyze sampled class comments (1 066)

v

&— Measure the adherence of comments to

—> conventions
» Comment convention Labeled
types (CCT) comments

SRQI SRQ2

Data Collection

Data sources

Stack Overflow \\w—\l

E Relevant tags Relevant topics

Tag selection

l

E E

19, 700 posts 3, 671 posts

Data extraction

L
Analysis Method)
Sample selection v

. Preprocess dataset

Data preparation. ¢ I—E [% N ITF%

Extract question titles 644 posts 570 posts Best practice posts

! ! !

Analysis Run LDA Classify assigned posts m
oy Review sampled posts Review others' |« | Evaluator accept/reject
Validation : : . :
from each topic classification reviews

! ¢

Discuss topics T Discuss conflicts (DD,

v v

"""""""""""" | | [-
Results for SRQs rh rh %

B ¢

Relevant topics First dimension = Second dimension Comment
taxonomy taxonomy recommendations
SRQI SRQ?2 SRQ3 SRQ4

223

224

For more detalls, refer to the thesis

Assessing Comment Quality in Object-Oriented Languages

l

P1:. Academic support

!

!

P2: Developer commenting practices

v

v

—

P3: Developer concerns

|

RQ4: How do researchers
measure comment quality?

RQ5: What kinds of information

do developers write in
comments across languages?

RQ3: To what extent do

developers follow the style
guidelines in their comments?

RQ4: What do developers ask

about commenting practices
on Q&A forums?

L) B 20102020 = @ Phar ¢ = ® PharC

{\

{\

— 71

Conduct a systematic literature
review on code comment quality

v

- Identify comment information types
(CITs)
- Propose an ML pipeline to automate

the identification of ClTs

- Identify comment conventions
from the style guidelines
- Assess adherence of comments

to conventions

- Analyze sample posts
- Prepare the taxonomies for

v

v

developer information needs

!

A~

Tl g B =R ey %
Quality Tools & Relevant Class Comment Machine learning C one_r|1_ g Labeled Relevant topics Challenges | Tool

attributes ~ Technology [Literature Type Model (CCTM) onve(rég_rlw_) ype comments

|
Acadce:rl:m?c?getr 3:ort for Chapter 4: Comment Chapter 5: Chapter 6: Chapter 7:
o (ggalit Information Types Automated Comment Adherence Commenting
Assessment y (CITs) |dentification of CITs to Conventions Practice Concerns

