
The Journal of Systems & Software 195 (2023) 111515

A
a

b

c

d

l
h
T
t
s
c

(
a

h
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A decade of code comment quality assessment: A systematic literature
review✩

Pooja Rani a,∗, Arianna Blasi b, Nataliia Stulova a, Sebastiano Panichella c,
lessandra Gorla d, Oscar Nierstrasz a

Software Composition Group, University of Bern, Bern, Switzerland
Università della Svizzera italiana, Lugano, Switzerland
Zurich University of Applied Science, Zurich, Switzerland
IMDEA Software Institute, Madrid, Spain

a r t i c l e i n f o

Article history:
Received 8 October 2021
Received in revised form 3 August 2022
Accepted 12 September 2022
Available online 22 September 2022

Keywords:
Code comments
Documentation quality
Systematic literature review

a b s t r a c t

Code comments are important artifacts in software systems and play a paramount role in many
software engineering (SE) tasks related to maintenance and program comprehension. However, while
it is widely accepted that high quality matters in code comments just as it matters in source code,
assessing comment quality in practice is still an open problem. First and foremost, there is no unique
definition of quality when it comes to evaluating code comments. The few existing studies on this
topic rather focus on specific attributes of quality that can be easily quantified and measured. Existing
techniques and corresponding tools may also focus on comments bound to a specific programming
language, and may only deal with comments with specific scopes and clear goals (e.g., Javadoc
comments at the method level, or in-body comments describing TODOs to be addressed).

In this paper, we present a Systematic Literature Review (SLR) of the last decade of research in SE
to answer the following research questions: (i) What types of comments do researchers focus on when
assessing comment quality? (ii) What quality attributes (QAs) do they consider? (iii) Which tools and
techniques do they use to assess comment quality?, and (iv) How do they evaluate their studies on
comment quality assessment in general?

Our evaluation, based on the analysis of 2353 papers and the actual review of 47 relevant ones,
shows that (i) most studies and techniques focus on comments in Java code, thus may not be
generalizable to other languages, and (ii) the analyzed studies focus on four main QAs of a total
of 21 QAs identified in the literature, with a clear predominance of checking consistency between
comments and the code. We observe that researchers rely on manual assessment and specific heuristics
rather than the automated assessment of the comment quality attributes, with evaluations often
involving surveys of students and the authors of the original studies but rarely professional developers.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Software systems are often written in several programming
anguages (Abidi and Khomh, 2020), and interact with many
ardware devices and software components (Lehman et al., 1997;
örngren and Sellgren, 2018). To deal with such complexity and
o ease maintenance tasks, developers tend to document their
oftware with various artifacts, such as design documents and
ode comments (de Souza et al., 2005). Several studies have

✩ Editor: Shane McIntosh.
∗ Corresponding author.

E-mail addresses: pooja.rani@unibe.ch (P. Rani), arianna.blasi@usi.ch
A. Blasi), nataliia.stulova@unibe.ch (N. Stulova), panc@zhaw.ch (S. Panichella),
lessandra.gorla@imdea.org (A. Gorla), oscar.nierstrasz@unibe.ch (O. Nierstrasz).
ttps://doi.org/10.1016/j.jss.2022.111515
164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
c-nd/4.0/).
demonstrated that high quality code comments can support de-
velopers in software comprehension, bug detection, and pro-
grammaintenance activities (Dekel and Herbsleb, 2009; McMillan
et al., 2010; Tan et al., 2007). However, code comments are typ-
ically written using natural language sentences, and their syntax
is neither imposed by a programming language’s grammar nor
checked by its compiler. Additionally, static analysis tools and lin-
ters provide limited syntactic support to check comment quality.
Therefore, writing high-quality comments and maintaining them
in projects is a responsibility mostly left to developers (Allamanis
et al., 2014; Kernighan and Pike, 1999).

The problem of assessing the quality of code comments has
gained a lot of attention from researchers during the last
decade (Khamis et al., 2010; Steidl et al., 2013; Ratol and Ro-
billard, 2017; Pascarella and Bacchelli, 2017; Wen et al., 2019).

Despite the research community’s interest in this topic, there is

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.jss.2022.111515
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111515&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pooja.rani@unibe.ch
mailto:arianna.blasi@usi.ch
mailto:nataliia.stulova@unibe.ch
mailto:panc@zhaw.ch
mailto:alessandra.gorla@imdea.org
mailto:oscar.nierstrasz@unibe.ch
https://doi.org/10.1016/j.jss.2022.111515
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

n
c
t
a

i
o
e
c
f
e
a
p
a
l
q
w
v
r
b
s
q
f

n
q
a
f
d
a
a
q
a
s
l
o
G
q
t

l

o clear agreement on what quality means when referring to code
omments. Having a general definition of quality when referring
o code comments is hard, as comments are diverse in purpose
nd scope.
Problem Statement. Maintaining high-quality code comments

s vital for software evolution activities, however, assessing the
verall quality of comments is not a trivial problem. As develop-
rs use various programming languages, adopt project-specific
onventions to write comments, embed different kinds of in-
ormation in a semi-structured or unstructured form (Padioleau
t al., 2009; Pascarella and Bacchelli, 2017), and lack quality
ssessment tools for comments, ensuring comment quality in
ractice is a complex task. Even though specific comments follow
ll language-specific guidelines in terms of syntax, it is still chal-
enging to determine automatically whether they satisfy other
uality aspects, such as whether they are consistent or complete
ith respect to the code or not (Zhou et al., 2017). There are
arious such aspects, e.g., readability, content relevance, and cor-
ectness that should be considered when assessing comments,
ut tools do not support all of them. Therefore, a comprehensive
tudy of the specific attributes that influence code comment
uality and techniques proposed to assess them is essential for
urther improving comment quality tools.

Previous mapping and literature review studies have collected
umerous quality attributes (QAs) that are used to assess the
uality of software documentation based on their importance
nd effect on the documentation quality. Ding et al. (2014)
ocused specifically on software architecture and requirement
ocuments, while Zhi et al. (2015) analyzed code comments
long with other types of documentation, such as requirement
nd design documents. They identified 16 QAs that influence the
uality of software documentation. However, the identified QAs
re extracted from a body of literature concerning relatively old
tudies (i.e., studies conducted prior to the year 2011) and are
imited in the context of code comments. For instance, only 10%
f the studies considered by Zhi et al. concern code comments.
iven the increasing attention that researchers pay to comment
uality assessment, it is essential to know which QAs, tools and
echniques they propose to assess code comment quality.

To achieve this objective, we perform an SLR on studies pub-
ished in the last decade, i.e., 2011-2020. We review 2353 studies
and find 47 to be relevant to assessing comment quality. From
these we extract the programming language, the types of ana-
lyzed comments, QAs for comments, techniques to measure them,
and the preferred evaluation type to validate their results.

We observe that (i) most of the studies and techniques fo-
cus on comments in Java code, (ii) many techniques that are
used to assess QAs are based on heuristics and thus may not
be generalizable to other languages, (iii) a total of 21 QAs are
used across studies, with a clear dominance of consistency, com-
pleteness, accuracy, and readability, and (iv) several QAs are often
assessed manually rather than with the automated approaches.
We find that the studies are typically evaluated by measuring
performance metrics and surveying students rather than by per-
forming validations with practitioners. This shows that there is
much room for improvement in the state of the art of comment
quality assessment.

The contributions of this paper are:

(i) an SLR of a total of 2353 papers, of which we review
the 47 most relevant ones, focusing on QAs mentioned
and research solutions proposed to assess code comment
quality,

(ii) a catalog of 21 QAs of which four QAs are often investi-
gated, while the majority is rarely considered in the stud-
ies, and of which 10 are new with respect to the previous
study by Zhi et al. (2015),
2

(iii) a catalog of methods used to measure these 21 QAs in
research studies,

(iv) an overview of the approaches and tools proposed to as-
sess comment quality, taking into account the types of
comments and the programming languages they consider,

(v) a discussion of the challenges and limitations of approaches
and tools proposed to assess different and complementary
comment QAs, and

(vi) a publicly available dataset including all validated data, and
steps to reproduce the study in the replication package.1

Paper structure. The rest of the paper is organized as follows.
In Section 2 we highlight our motivation and rationale behind
each research question, and we present our methodology, in-
cluding the different steps performed to answer our research
questions. In Section 3 we report the study results. We discuss
the results in Section 4 and their implications and future direction
in Section 5. We highlight the possible threats to validity for our
study in Section 6. Then Section 7 summarizes the related work,
in relation to the formulated research questions. Finally, Section 8
concludes our study, outlining future directions.

2. Study design

The main objective of our study is to present an overview of
the state of the art in assessing the quality of code comments.
Specifically, we aim to highlight the QAs mentioned in the liter-
ature, and the techniques used so far to assess comment quality.
To this end, we carry out an SLR, following the widely accepted
guidelines of Kitchenham and Charters (2007) and Keele (2007).
The first step in this direction is to specify the research questions
related to the topic of interest (Kitchenham and Charters, 2007).
The following steps focus on finding a set of relevant studies that
are related to the research questions based on an unbiased search
strategy.

2.1. Research questions

Our goal is to foster research that aims at building code com-
ment assessment tools. To achieve this goal, we conduct an SLR,
investigating the literature of the last decade to identify comment
related QAs and solutions that address related challenges. We
formulate the following research questions:

• RQ1: What types of comments do researchers focus on when
assessing comment quality?
Motivation: Comments are typically placed at the beginning
of a file, usually to report licensing or author informa-
tion, or placed preceding a class or function to document
the overview of a class or function and its implementa-
tion details. Depending on the specific type of comment
used in source code and the specific programming lan-
guage, researchers may use different techniques to assess
them. These techniques may not be generalizable to other
languages. For example, studies analyzing class comments
in object-oriented programming languages may need extra
effort to generalize the comment assessment approach to
functional programming languages. We, therefore, investi-
gate the comment types researchers target.

• RQ2: What QAs do researchers consider in assessing comment
quality?
Motivation: QAs may solely concern syntactic aspects of the
comments (e.g., syntax of comments), writing style (e.g.,
grammar), or content aspects (e.g., consistency with the
code). Researchers may use different terminology for the

1 https://doi.org/10.5281/zenodo.4729054

https://doi.org/10.5281/zenodo.4729054


P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

2

c
q

2

o
C
o
o
t
c

f
I
S
t
t
a
A

m
q
q
s

t
t

w
K
m

2

D
w
1
t
m
o

d
c

2

s
u
f

t
v
t
W
o
o
S

same QA and thus these terms must be mapped across
studies to obtain a unifying view of them, for instance, if the
accuracy QA is defined consistently across studies or another
terminology is used for it. We collect all the possible QAs
that researchers refer to and map them, if necessary, follow-
ing the methodology of Zhi et al. Future studies that aim to
improve specific aspects of comment quality evaluation can
use this information to design their tools and techniques.

• RQ3: Which tools and techniques do researchers use to assess
comment QAs?
Motivation: Researchers may assess QAs manually, or may
use sophisticated tools and techniques based on simple
heuristics or complex machine learning (ML) to assess them
automatically. We aim to identify if there are clear winning
techniques for this domain and collect various metrics and
tools used for this purpose.

• RQ4: What kinds of contribution do studies often make?
Motivation: Engineering researchers usually motivate their
research based on the utility of their results. Auyang clar-
ifies that engineering aims to apply scientific methods to
real world problems (Auyang, 2006). However, software
engineering currently lacks validation (Zelkowitz and Wal-
lace, 1997). With this question, we want to understand
what types of solution researchers contribute to improving
automatic comment quality assessment, such as metrics,
methods, or tools. This RQ can provide insight into specific
kinds of solutions for future work.

• RQ5: How do researchers evaluate their comment quality as-
sessment studies?
Motivation: Researchers may evaluate their comment as-
sessment approaches, e.g., by surveying developers, or by
using a dataset of case studies. However, how often they in-
volve professional developers and industries in such studies
is unknown.

.2. Search strategy

After formulating the research questions, the next steps fo-
us on finding relevant studies that are related to the research
uestions. In these steps, we

1. construct search keywords in Section 2.2.1,
2. choose the search timeline in Section 2.2.2,
3. collect sources of information in Section 2.2.3,
4. retrieve studies in Section 2.2.4,
5. select studies based on the inclusion/exclusion criteria in

Section 2.2.5, and
6. evaluate the relevant studies to answer the research ques-

tions in Section 2.2.6.

.2.1. Search keywords
Kitchenham et al. recommended formulating individual facets

r search units based on the research questions (Kitchenham and
harters, 2007). These search units include abbreviations, syn-
nyms and other spellings, and they are combined using boolean
perators. Pettricrew et al. suggested PIO (population, interven-
ions, and outcome) criterion to define such search units (Petti-
rew and Roberts, 2008).
The populations include terms related to the standards. We

irst examine the definitions of documentation and comment in
EEE Standard Glossary of Software Engineering Terminology (IEEE
tandard 610.12-1990) to collect the main keywords. According
o the definition, we identify the keywords comment, documen-
ation, and specification and add them to the set K1. We further
dd frequently mentioned comment-related keywords, such as
PI, annotation, and summar to the set K .
1

3

Table 1
keywords selected according to PIO criterion.
Criteria keywords
Populations (K1) comment, documentation, specification, API, anno-

tation, and summar
Interventions (K2) quality, assess, metric, measure, score, analy,

practice, structur, study, and studied

The interventions include terms that are related to software
ethodology, tools, technology, or procedures. With respect to
uality assessment, we define the intervention keywords to be
uality, assess, metric, measure, score, analy, practice, structur,
tudy, or studied and add them to the set K2.

Note that we add common variations of the words manually,
for example, we add ‘‘summar’’ keyword to the set to cover
both ‘‘summary’’ and ‘‘summarization’’. We do not use any NLP
libraries to stem words due to two main reasons, (i) to reduce
the noisy matches, and (ii) the words from the title and abstract of
the papers are not preprocessed (stemmed or lemmatized), there-
fore stemming the keywords might not find the exact or prefix
matches. For example, using the porter stemming approach, the
word ‘‘study’’ will be stemmed to ‘‘studi’’ and we might miss the
papers with ‘‘study’’ word. To avoid such cases, we add common
variations of this word study and studied to our search keywords.

The outcomes include terms that are related to factors of sig-
nificance to developers (e.g., reduced cost, reduced time to assess
quality). Since it is not a required unit to restrict the search scope,
and our focus is on all kinds of quality assessment approaches,
we exclude the outcomes in our search keywords. However, to
narrow down our search and exclude irrelevant papers, such
those about code reviews or testing, or non-technical papers, we
formulate another set of keywords, K3. In this set, we include code
review, test, keynote, invited, and poster, to exclude entries of non-
echnical papers that were not filtered out using the heuristics on
he number of pages.

Hence, using the final set of keywords (also given in Table 1),
e select a paper if its title and abstract match the keywords from
1 and K2 but not from K3 where the prefix function is used to
atch the keywords in the paper.

.2.2. Timeline
We focus our SLR on the last decade (i.e., January 2011-

ecember 2020) since Zhi et al. investigated the works on soft-
are documentation quality — including code comments — from
971 to 2011 Zhi et al. (2015). Our results can thus be used
o observe the evolution of comment quality assessment, but,
ore importantly, they naturally complement the existing body
f knowledge on the topic.
We then proceed to the main steps i.e., retrieving the paper

ata, selecting venues, and identifying the relevant papers for our
omment context.

.2.3. Data collection
Concretely, our data collection approach comprises three main

teps, i.e., literature data collection, data selection, and data eval-
ation, which we sketch in Fig. 1 and present in further detail as
ollows:

We now describe how we automatically collect the data from
he literature, explaining the rationale behind our selection of
enues and our automatic keyword-based filtering to identify
he likely relevant papers regarding comment quality assessment.
e justify the need for another step of data gathering based
n the snowball approach in Section 2.2.5. Finally, we present
ur criteria for the careful evaluation of the relevant papers in
ection 2.2.6.



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

a
m
t
v
a
d
p
i
r
m
f
i
i
i

f
l
I
I
u
m

t
i
o
c
o

s

C

Fig. 1. SLR stages to collect relevant papers.
c
p
e

s
a
c
a

i
m
p
d
k
f
i
a

2

Venue Selection. Code comment analysis, generation, usage,
nd maintenance are of primary interest to the SE research com-
unity. Thus, in order to systematically review the literature on

he comment quality assessment, we start by focusing on the SE
enues. We use the latest 2020 updated version of the conference
nd journal database of the CORE ranking portal as a primary
ata source to identify all the potentially relevant SE venues.2 The
ortal provides assessments of major conferences and journals
n the computing disciplines, and it is a well-established and
egularly-validated registry maintained by the academic com-
unity. We extract all ranked journals in SE (search code 803)

rom the CORE portal3 and all top conferences and workshops
n the SE field (search code 4612).4 This process gives us an
nitial list of 85 journal and 110 conference venues. We select
n step 1 26 software engineering (SE) conferences and journals
from 195 candidate venues based on the likelihood of finding
relevant papers in their proceedings.

We focus on A* and A conferences and journals, and add con-
erences of rank B or C if they are co-located with previously se-
ected A* and A conferences to have venues, such as the IEEE/ACM
nternational Conference on Program Comprehension (ICPC) or the
EEE International Workshop on Source Code Analysis and Manip-
lation (SCAM) that focus on source code comprehension and
anipulation.
We prune venues that may not contain relevant contributions

o source code comments. Specifically, we exclude a venue if
ts ten years of proceedings contain fewer than five occurrences
f the words documentation or comment. This way, we exclude
onferences, such as IEEE International Conference on Engineering
f Complex Computer Systems (ICECCS), Foundations of Software

Science and Computational Structures (FoSSaCS), and many oth-
ers that primarily focus on other topics, such as verification
or programming languages. Thus, we reduce our dataset to 20
conferences and six journals, as shown in Table 2.

In Table 2, the column Type specifies whether a venue is a
conference (C) or a journal (J), and the column Rank denotes
the corresponding CORE rank of the venue as of April 2021. The
column Selection indicates the data collection phase in which the
venue was first selected. The column Papers per venue indicates
the total number of papers selected from this venue, both during
the direct search and the snowball search.

We consider only full papers (published in a technical track
and longer than five pages) since they are likely to be an extended
or mature version of the papers published in other tracks, such as
NIER, ERA, or Poster.

2 https://www.core.edu.au/conference-portal
3 http://portal.core.edu.au/jnl-ranks/?search=803&by=for&source=CORE2020&

ort=arank&page=1 accessed on 25 Mar, 2021
4 http://portal.core.edu.au/conf-ranks/?search=4612&by=for&source=
ORE2020&sort=arank&page=1 accessed on 25 Mar, 2021
4

2.2.4. Data retrieval
We retrieve in step 2 the proceedings from January 2011

to December 2020 of the selected venues from the DBLP digi-
tal library. From each paper, we collect its metadata using the
GitHub repository,5 such as the title, authors, conference track (if
present), its page length, and its Digital Object Identifier (DOI),
directly from DBLP for a total of 17554 publications. For each
paper, the DOI is resolved and its abstract is collected from the
publisher webpage.

Keyword-based filtering. We apply in step 3 a keyword-based
search (given in Section 2.2.1 using a prefix function) to the
retrieved proceedings to select potentially relevant papers. We
account for possible upper- and lowercase letters in the key-
words, and sometimes use variations of keywords (e.g., singular
and plural forms).

Our filtering will get papers (whose title and abstract include
keywords from K1 and K2 but not from K3) that explicitly mention
oncepts we are interested in, e.g., ‘‘A Human Study of Com-
rehension and Code Summarization’’ from ICPC 2020 (Stapleton
t al., 2020) is matched by keywords summar from K1 in the title

and quality from K2 in the abstract, but will exclude papers not
ufficiently close to our research subject, e.g., ‘‘aComment: mining
nnotations from comments and code to detect interrupt related
oncurrency bugs’’ from ICSE 2011 has two keywords comment
nd annotation from K1 but none from the K2.
The final set of keywords we use for filtering is the result of an

terative approach: we manually scan the full venue proceedings
etadata to make sure the set of keywords did not prune relevant
apers, and we refine the set of keywords during several iterative
iscussions. This iterative approach gives us confidence that our
eyword-based filtering approach does not lead to false negatives
or the selected venues. After applying the keyword-based filter-
ng, we identify 2043 studies as potentially-relevant papers from
total of 17554, which we review manually.

.2.5. Data selection
We analyze 4 the 2043 selected papers following the protocol

where four authors or evaluators manually evaluate the papers
based on the inclusion and exclusion criterion to ensure that they
indeed assess comment quality.

Inclusion criteria

I1 The topic of the paper is about code comment quality.
I2 The study presents a model/technique/approach to assess

code comments or software documentation including code
comments.

Exclusion criteria

E1 The paper is not in English.

5 https://github.com/sbaltes/dblp-retriever

https://www.core.edu.au/conference-portal
http://portal.core.edu.au/jnl-ranks/?search=803&by=for&source=CORE2020&sort=arank&page=1
http://portal.core.edu.au/jnl-ranks/?search=803&by=for&source=CORE2020&sort=arank&page=1
http://portal.core.edu.au/conf-ranks/?search=4612&by=for&source=CORE2020&sort=arank&page=1
http://portal.core.edu.au/conf-ranks/?search=4612&by=for&source=CORE2020&sort=arank&page=1
https://github.com/sbaltes/dblp-retriever


P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

M
a
m
g
c
n
o
i
t
p
f
b
t
t
t
‘
e
t
r
b

(
T

Table 2
Included Journals, Conferences, and Workshops.
Venue Abbreviation Rank Type Selection Papers per venue
ACM Computing Surveys CSUR A* J Search
ACM Transactions on Software Engineering and Methodology TOSEM A* J Search
IEEE Transactions on Software Engineering TSE A* J Search 5
Empirical Software Engineering: an international journal EMSE A J Search 6
Journal of Systems and Software JSS A J Search 2
Information and Software Technology IST A J Search 1
ACM SIGSOFT Symposium on the Foundations of Software Engineering ESEC/FSE A* C Search 3
International Conference on Software Engineering ICSE A* C Search 6
Architectural Support for Programming Languages and Operating Systems ASPLOS A* C Search
Computer Aided Verification CAV A* C Search
International Conference on Functional Programming ICFP A* C Search
ACM Conference on Object Oriented Programming Systems Languages and Applications OOPSLA A* C Search 1
ACM-SIGPLAN Conference on Programming Language Design and Implementation PLDI A* C Search
ACM-SIGACT Symposium on Principles of Programming Languages POPL A* C Search
Measurement and Modeling of Computer Systems SIGMETRICS A* C Search
Automated Software Engineering Conference ASE A C Search 2
International Conference on Evaluation and Assessment in Software Engineering EASE A C Search 1
International Symposium on Empirical Software Engineering and Measurement ESEM A C Search 1
IEEE International Conference on Software Maintenance and Evolution ICSME A C Search 2
IEEE International Working Conference on Mining Software Repositories MSR A C Search 1
International Symposium on Software Reliability Engineering ISSRE A C Search
IEEE International Working Conference on Software Visualisation VISSOFT B C Search
IEEE International Conference on Global Software Engineering ICGSE C C Search
IEEE International Conference on Program Comprehension ICPC C C Search 5
International Workshop on Modelling in Software Engineering MISE C C Search
IEEE International Workshop on Source Code Analysis and Manipulation SCAM C C Search 1
International Conference on Web Information Systems and Applications WISA - C Snowball 1
Software Quality Journal - C J Snowball 1
Software: Practice and Experience SPE B J Snowball 1
ACM Symposium on Applied Computing SAC B C Snowball 1
IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation MaLTeSQuE - C Snowball 1
Journal of Software: Evolution and Process JSEP B J Snowball 1
Asia-Pacific Symposium on Internetware Internetware - C Snowball 1
IEEE International Joint Conference on Neural Networks IJCNN A C Snowball 1
International Computer Software and Applications Conference COMPSAC B C Snowball 1
Asia-Pacific Software Engineering Conference APSEC B C Snowball 1
International journal of software engineering and knowledge engineering SEKE - J Snowball 1
w
c

c
u
r
F
r

E2 It does not assess any form of quality aspects of comments
e.g., content, style, or language used.

E3 It is not published in a technical track.
E4 It is a survey paper.
E5 It is not a peer reviewed paper, or it is a pre-print.
E6 It covers other documentation artifacts, i.e., not comments.
E7 It is shorter than 5 pages.

anual analysis. The selected papers were equally divided
mong four evaluators (i.e., two Ph.D. candidates and two faculty
embers) based on years of publications so that each evaluator
ets papers from all venues, e.g., the first author evaluate pro-
eedings from 2011 to 2013. We make sure that evaluators do
ot take decisions on papers they co-authored to avoid conflicts
f interest. Each evaluator has at least two years of experience
n the domain of comment analysis. Each paper is reviewed by
hree evaluators. The evaluators follow a three-iteration-based
rocess to evaluate the assigned papers. In the first iteration, the
irst evaluator independently assesses the relevance of a paper
ased on the criteria by inspecting each paper’s title and abstract,
o make an initial guess, then inspecting its conclusion to reach
he final decision. In the next iteration, another evaluator reviews
he paper and validates the previous decision by adding the label
‘agrees/disagrees with the first evaluator’’. With this process,
very publication selected in the final set is reviewed by at least
wo researchers. In case they do not agree, the third evaluator
eviews it (Kuhrmann et al., 2017), and the final decision is taken
ased on the majority voting mechanism.
We decide, for instance, to include the study by Hata et al.

2019), even though it only talks about links in comments.

hough it does not explicitly describe any quality aspect of t

5

comments, it mentions the traceability of the links, which is a
QA we consider in our study. All studies considered in our SLR
together with their evaluation (the agreement and disagreement
for each study) are available in our replication package.

Thus, we reduce 2043 papers to 71 candidate papers (i.e.,3%)
ith a fair agreement according to Cohen’s Kappa (k=0.36). For all
andidate papers, we read in step 5 their introduction, conclu-
sion, and the study design (if needed), and discuss them amongst
ourselves to ensure their relevance. During this analysis process,
some additional papers were found to be irrelevant. For example,
the study by Aghajani et al. seems relevant based on the title
and abstract, but does not really evaluate code comments, and
we thus discarded it (Aghajani et al., 2020). With this process, 41
papers in total were discarded, reducing the relevant paper set to
30 papers.

Data gathering for snowballing. To include further relevant papers
that we might have missed with the venue-based approach, we
perform in step 6 a forward and backward snowballing approach
for the 30 papers and retrieve a total of 3704 unique papers.

Snowball papers Total Unique Selected
from citations 2610 1624 741
from references 3369 2080 2021

The column Total reports the total number of references and
itations collected. The Unique column reports a total number of
nique items (i.e., since relevant papers cover similar topics many
eferences, and citations are shared across our set of studies).
inally, the column Selected reports the total number of unique
eferences and citations whose publication year falls within our
ime frame range, i.e., 2011–2020.



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515
Table 3
Included studies.
Study ID Title Year Reference
S01 How Good is Your Comment? A Study of Comments in Java

Programs.
2011 Haouari et al. (2011)

S02 Quality Analysis of Source Code comments. 2013 Steidl et al. (2013)
S03 Evaluating Usage and Quality of Technical Software

Documentation: An Empirical Study.
2013 Garousi et al. (2013)

S04 Inferring Method Specifications from Natural Language API
Descriptions.

2012 Pandita et al. (2012)

S05 Using Traceability Links to Recommend Adaptive Changes for
Documentation Evolution.

2014 Dagenais and Robillard (2014)

S06 On Using Machine Learning to Identify Knowledge in API
Reference Documentation.

2019 Fucci et al. (2019)

S07 Detecting Fragile Comments. 2017 Ratol and Robillard (2017)
S08 Automatically Assessing Code Understandability: How Far are

We?
2017 Scalabrino et al. (2017)

S09 Analyzing APIs Documentation and Code to Detect Directive
Defects.

2017 Zhou et al. (2017)

S10 The Effect of Poor Source Code Lexicon and Readability on
Developers’ Cognitive Load.

2018 Fakhoury et al. (2018)

S11 A Large-Scale Empirical Study on Linguistic Antipatterns Affecting
APIs.

2018 Aghajani et al. (2018)

S12 Improving API Caveats Accessibility by Mining API Caveats
Knowledge Graph.

2018 Li et al. (2018)

S13 A Learning-Based Approach for Automatic Construction of Domain
Glossary from Source Code and Documentation.

2019 Wang et al. (2019)

S14 A Framework for Writing Trigger-Action Todo Comments in
Executable Format.

2019 Nie et al. (2019)

S15 A Large-Scale Empirical Study on Code-Comment Inconsistencies. 2019 Wen et al. (2019)
S16 Software Documentation Issues Unveiled. 2019 Aghajani et al. (2019)
S17 The Secret Life of Commented-Out Source Code. 2020 Pham and Yang (2020)
S18 Code Comment Quality Analysis and Improvement

Recommendation: An Automated Approach
2016 Sun et al. (2016)

S19 A Human Study of Comprehension and Code Summarization. 2020 Stapleton et al. (2020)
S20 CPC: Automatically Classifying and Propagating Natural Language

Comments via Program Analysis.
2020 Zhai et al. (2020)

S21 Recommending Insightful Comments for Source Code using
Crowdsourced Knowledge.

2015 Rahman et al. (2015)

S22 Improving Code Readability Models with Textual Features. 2016 Scalabrino et al. (2016)
S23 Automatic Source Code Summarization of Context for Java

Methods.
2016 McBurney and McMillan (2016a)

S24 Automatic Detection and Repair Recommendation of Directive
Defects in Java API Documentation.

2020 Zhou et al. (2020)

S25 Measuring Program Comprehension: A Large-Scale Field Study
with Professionals.

2018 Xia et al. (2018)

S26 Usage and Usefulness of Technical Software Documentation: An
Industrial Case Study

2015 Garousi et al. (2015)

S27 What Should Developers be Aware of? An Empirical Study on the
Directives of API Documentation.

2012 Monperrus et al. (2012)

S28 Analysis of License Inconsistency in Large Collections of Open
Source Projects.

2017 Wu et al. (2017)

S29 Classifying Code Comments in Java Software Systems. 2019 Pascarella et al. (2019)
S30 Augmenting Java Method Comments Generation with Context

Information based on Neural Networks.
2019 Zhou et al. (2019)

S31 Improving Source Code Lexicon via Traceability and Information
Retrieval.

2011 Lucia et al. (2011)

S32 Detecting API Documentation Errors. 2013 Zhong and Su (2013)
S33 Analyzing Code Comments to Boost Program Comprehension 2018 Shinyama et al. (2018)
S34 Recommending Reference API Documentation. 2015 Robillard and Chhetri (2015)
S35 Some Structural Measures of API Usability 2015 Rama and Kak (2015)
S36 An Empirical Study of the Textual Similarity between Source

Code and Source Code Summaries.
2016 McBurney and McMillan (2016)

S37 Linguistic Antipatterns: What They are and How Developers
Perceive Them.

2016 Arnaoudova et al. (2016)

S38 Coherence of Comments and Method Implementations: A Dataset
and An Empirical Investigation

2016 Corazza et al. (2018)

S39 A Comprehensive Model for Code Readability 2018 Scalabrino et al. (2018)
S40 Automatic Detection of Outdated Comments During Code Changes 2018 Liu et al. (2018)
S41 Classifying Python Code Comments Based on Supervised Learning 2018 Zhang et al. (2018)
S42 Investigating Type Declaration Mismatches in Python 2018 Pascarella et al. (2018)
S43 The Exception Handling Riddle: An Empirical Study on the

Android API.
2018 Kechagia et al. (2018)

S45 Migrating Deprecated API to Documented Replacement: Patterns
and Tool

2019 Xi et al. (2019)

S46 A Topic Modeling Approach To Evaluate The Comments
Consistency To Source Code

2020 Iammarino et al. (2020)

S47 Comparing Identifiers and Comments in Engineered and
Non-Engineered Code: A Large-Scale Empirical Study

2020 Lemos et al. (2020)
6



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

D
k
t
W

p
i
i
t
w

s
A
a
1
f
w
a
s
f
b
c
S
c
r
(
b

p
t
a
c
t
s
s

2

p
I
u
S
e
w

G
p
V
W
p

2

c
t
a
c
c

ata selection from snowballing. We repeat in step 7 the same
eyword-based filtering to these 3704 papers, as described in Sec-
ion 2.2.3. As a result, 311 papers were added for manual analysis.
e repeat in step 8 the three-iteration based manual analysis

process and find 39 additional candidate papers to analyze. After
the second round of discussion 9 we keep 17 additional relevant
apers. We find a total of 47 papers shown in Table 3 published
n the venues shown in Table 2. In Table 3, the column Study ID
ndicates the ID assigned to each paper, the column Title presents
he title of the paper, and the column Year indicates the years in
hich the paper is published.
To further ensure the relevance of our search strategy, we

earch our keywords on popular publication databases, such as
CM, IEEE Xplore, Wiley etc. We search for our keywords in titles
nd abstracts.6 We retrieve 13144 results from IEEE Xplore, and
0567 from ACM for the same timeline (2011-2020). We inspect
irst 200 results (sorted by relevance criterion on the publisher
ebpage) from each of these databases. We apply our inclusion
nd exclusion criterion to find the extent to which our venue
election criteria might have missed relevant papers. Our results
rom ACM show that 19% of the these papers are already covered
y our search strategy but only 5% of them fulfilled our inclusion
riterion. Nearly 81% of the papers are excluded due to their non-
E venue. Among these papers, 80% are unrelated to the code
omment quality aspect while 1% of papers (two papers) that are
elated to code comments are missed due to two main reasons,
i) the venue not being indexed in CORE2020, and (ii) the paper
eing from a non-technical track.
Similarly, the results from IEEE show that 30% of the pa-

ers are already covered by our search strategy but only 5% of
hem fulfilled the inclusion criterion. Nearly 69% of the papers
re excluded due to their non-SE venue and unrelated to code
omment quality aspect. We also find 1% papers that are relevant
o our topic of interest but excluded due to the length criteria,
pecifically one of the paper is a poster paper and another is a
hort paper.

.2.6. Data evaluation
We work in step 10 on the full versions of the 47 relevant pa-

ers to identify the QAs and the approaches to assess comments.
n case we cannot retrieve the full PDF version of a paper, we use
niversity resources to access it. This affects only one paper by
un et al. which requires payment to access the full version (Sun
t al., 2016). In case we cannot access a paper via any resource,
e remove it from our list. We find no such inaccessible study.
We report all papers in an online shared spreadsheet on

oogle Drive to facilitate their analysis collaboratively. For each
aper we extract common metadata, namely Publication year,
enue, Title, Authors, Authors’ country, and Authors’ affiliation.
e then extract various dimensions (described in the following
aragraphs) formulated to answer all research questions.

.3. Data extraction for research questions

To answer RQ1 (What types of comments do researchers focus on
when assessing comment quality?), we record the Comment scope
dimension. It lists the scope of comments under assessment such
as class, API, method (function), package, license, or inline com-
ments. In case the comment type is not mentioned, we classify it
as ‘‘code comments’’. Additionally, we identify the programming
languages whose comments are analyzed, and record this in the
Language analyzed dimension.

6 It is not possible to search the keywords in abstracts in Wiley.
7

To answer RQ2 (What QAs do researchers consider in assessing
omment quality?), we identify various QAs researchers men-
ion to assess comment quality. This reflects the various quality
spects researchers perceive as important to have high-quality
omments. Table 4 lists the QAs in the Quality attribute (QA)
olumn and their brief summary in the Description column. Of
these QAs, several are mentioned by Zhi et al. in their work (Zhi
et al., 2015), and are highlighted by the bold text compared to QAs
mentioned in other works. As Zhi et al. considered various types
of documentation, such as requirement and architectural docu-
ments, not all attributes fit exactly into our study. For instance,
the category ‘‘Format’’ includes the format of the documentation
(e.g., UML, flow chart) in addition to the other aspects such as
writing style of the document, use of diagrams etc. Although
the format of the documentation is not applicable in our case
due to our comment-specific interest, we keep other applicable
aspects (writing style, use of diagram) of this QA. In addition
to their QAs, we include any additional attribute mentioned in
our set of relevant papers. If a study uses different terminology
but similar meaning to QAs in our list, we map such QAs to our
list and update the list of possible synonyms as shown in the
column Synonyms in Table 4. In case we cannot map a study to
the existing QAs, we map it to the Other category.

For the cases where the studies do not mention any spe-
cific QA and mention comment quality analysis in general, we
map the study to the list of existing QAs or classify it as Other
based on their goal behind the quality analysis. For example,
Pascarella et al. identify various information types in comments
to support developers in easily finding relevant information for
code comprehension tasks and to improve the comment quality
assessment (Pascarella and Bacchelli, 2017). They do not mention
any specific QA, but based on their study goal of finding relevant
information easily, we map their study to the content relevance
QA. Similarly, we map other comment classification studies such
as Fucci et al. (2019), Pascarella et al. (2019), Shinyama et al.
(2018), and Zhang et al. (2018) to the content relevance attribute.
At the same time, the studies on linguistic anti-patterns (LAs)
are mapped to the consistency attribute, given that LAs are prac-
tices that lead to lexical inconsistencies among code elements,
or between code and associated comments (Arnaoudova et al.,
2016; Fakhoury et al., 2018; Aghajani et al., 2018). Additionally,
the studies that mention the negation of the QAs such as in-
consistency, incorrectness, or incompleteness are mapped to their
antonyms as consistency, correctness, or completeness, respectively
to prevent duplication.

RQ3 (Which tools and techniques do researchers use to assess
comment QAs?) concerns various methods researchers use or pro-
pose to assess comment QAs, for instance, whether they use
machine-learning based methods to assess comment quality or
not.

• Technique type. This identifies whether the technique used to
assess a QA is based on natural language processing (NLP),
heuristics, static analysis, metrics, machine-learning (ML), or
deep neural network (DNN) approaches. The rationale is to
identify which QAs are often assessed manually or using a
specific automated approach. For instance, if the study uses
specific heuristics related to the programming environment
to assess a QA, it is classified as heuristic-based technique,
if it uses abstract syntax tree (AST) based static analysis
approaches, then it is assigned to static analysis, and if it
uses machine-learning or deep-learning-based techniques
(including any or both of the supervised or unsupervised
learning algorithms), then it is classified as ML-based, or
DNN-based respectively. A study can use mixed techniques
to assess a specific QA and thus can be assigned to multiple

techniques for the corresponding QA. We often find cases



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515
Table 4
RQ2 QAs mentioned by Zhi et al. (highlighted in bold) and other works.
Quality Attribute (QA) Synonyms Description
QAs mentioned by Zhi et al.

Accessibility Availability, information
hiding, easiness to find

Whether comment content can be accessed or retrieved by developers or not

Readability Clarity The extent to which comments can be easily read by other readers

Spelling and grammar Natural language quality Grammatical aspect of the comment content

Trustworthiness The extent to which developers perceive the comment as trustworthy

Author-related Identity of the author who wrote the comment

Correctness Whether the information in the comment is correct or not

Completeness Adequacy How complete the comment content is to support development and
maintenance tasks or whether there is missing information in comments or
not

Similarity Uniqueness, duplication How similar the comment is to other code documents or code

Consistency Uniformity, integrity The extent to which the comment content is consistent with other documents
or code

Traceability The extent to which any modification in the comment can be traced,
including who performed it

Up-to-datedness How the comment is kept up-to-date with software evolution

Accuracy Preciseness Accuracy or preciseness of the comment content. If the documentation is too
abstract or vague and does not present concrete examples, then it can seem
imprecise.

Information organization How the information inside a comment is organized in comments

Format Including visual models, use of
examples

Quality of documents in terms of writing style, description perspective, use of
diagrams or examples, spatial arrangement, etc.

QAs mentioned by other works

Coherence How comment and code are related to each other, e.g., method comment
should be related to the method name(Steidl et al. (2013), Corazza et al.
(2018))

Conciseness The extent to which comments are not verbose and do not contain
unnecessary information (McBurney and McMillan (2016a), Zhou et al. (2019),
Lemos et al. (2020))

Content relevance How relevant the comment or part of the comment content is to a particular
purpose (documentation, communication) (Haouari et al. (2011), Garousi et al.
(2013), Pascarella et al. (2019), Zhang et al. (2018), Lemos et al. (2020))

Maintainability The extent to which comments are maintainable (Wen et al. (2019)–Pham
and Yang (2020), Zhai et al. (2020)–Rahman et al. (2015))

Understandability The extent to which comments contribute to understanding the system
(Stapleton et al. (2020), McBurney and McMillan (2016a))

Usability Usefulness To which extent the comment can be used by readers to achieve their
objectives (Steidl et al. (2013), Aghajani et al. (2019), Robillard and Chhetri
(2015), Rama and Kak (2015))

Documentation technology Whether the technology to write, generate, store documentation is current or
not

Internationalization The extent to which comments are correctly translated in other languages
(Aghajani et al. (2019))

Other The study does not mention any QA and cannot be mapped to any of the
above attributes
P
o

m

where the studies do not use any automated technique to
measure a QA and instead ask other developers to assess it
manually, so we put such cases into the manual assessment
category. In case the study mentions a different technique,
we extend the dimension values.

• Metrics or tools. This further elaborates specific metrics, or
tools the studies propose or use to assess a QA. A study
can use an existing metric or can propose a new one. Sim-
ilarly, one metric can be used to assess multiple QAs. We
identify such metrics to highlight popular metrics amongst
researchers.

RQ4 (What kinds of contribution do studies often make?) cap-
tures the nature of the study and the type of contribution re-
searchers use or propose to assess comment quality. We first
identify the nature of research of a study and then identify the
type of contribution it provides. This can reflect the kind of
8

research often conducted to assess comment quality and the kind
of contribution they make to support developers in assessing
comment quality, for instance, what kind of solutions the Solution
roposal research often propose, such as a method, metric, model,
r tool.
To capture this information, we formulate the following di-

ensions:

• Research type. This identifies the nature of the research
approach used in the studies, such as empirical, validation,
evaluation, solution proposal, philosophical, opinion, or ex-
perience paper (Wieringa et al., 2006; Petersen et al., 2008).
The dimension values are described in detail in Table 5.

• Paper contribution. This dimension describes the type of con-
tribution the study provides in terms of a method/technique,
tool, process, model, metric, survey, or empirical results (Pe-
tersen et al., 2008). The dimension values are described in



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

m
t
o
t
p
a
v
o
d
b
i
a

Table 5
Type of research approach studies use and type of contributions studies make.
Dimension Category Description
Research type Empirical This research task focuses on understanding and highlighting various problems by analyzing relevant projects,

or surveying developers. These papers often provide empirical insights rather than a concrete technique.

Validation This research task focus on investigating the properties of a technique that is novel and is not yet
implemented in practice, e.g., techniques used for mathematical analysis or lab experimentation

Evaluation The paper investigates the techniques that are implemented in practice and their evaluation is conducted to
show the results of the implementation in terms of its pros and cons and thus help researchers in improving
the technique.

Solution Proposal The paper proposes a novel or a significant extension of an existing technique for a problem and describes
its applicability, intended use, components, and how the components fit together using a small example or
argumentation.

Philosophical These papers present a new view to look at the existing problems by proposing a taxonomy or a conceptual
framework, e.g., developing a new language or framework to describe the observations is a philosophical
activity.

Opinion These papers describe the author’s opinion in terms of how things should be done, or if a certain technique
is good or bad. They do not rely on research methodologies and related work.

Experience These papers explain the personal experience of a practitioner in using a certain technique to show how
something has been done in practice. They do not propose a new technique and are not scientific
experiments.

Contribution type Empirical The paper provides empirical results based on analyzing relevant projects to understand and highlights the
problems related to comment quality.

Method/technique The paper provides a novel or significant extension of an existing approach.

Model Provides a taxonomy to describe their observations or an automated model based on machine/deep learning.

Metric Provides a new metric to assess specific aspects of comments.

Survey Conducts survey to understand a specific problem and contribute insights from developers.

Tool Develops a tool to analyze comments.
3

p
o

M
c
f
c
t
d
i
q

detail in Table 5. If we cannot categorize it into any of these,
we mark it ‘‘Other’’.

• Tool availability. This reflects whether the tool proposed
in the study is accessible or not at the time of conduct-
ing our study. González et al. identified the reproducibility
aspects characterizing empirical software engineering stud-
ies (González-Barahona and Robles, 2012) in which avail-
ability of the artifact (the tool proposed in the study, or
the dataset used to conduct the study) is shown as an
important aspect to facilitate the replication and extension
of the study. Therefore, we record the availability of the
proposed tool in this dimension and the availability of the
dataset in the following dimension.

• Dataset availability. This reflects if the dataset used in the
empirical study is accessible or not.

RQ5 (How do researchers evaluate their comment quality assess-
ent studies?) concerns how various kinds of research (Research

ype dimension described in the previous RQ), and various kinds
f contribution (Paper contribution dimension) are evaluated in
he studies. For example, it helps us to observe that if a study
roposes a new method/technique to assess comments, then the
uthors also conduct an experiment on open-source projects to
alidate the contribution, or they consult the project developers,
r both. We capture the type of evaluation in the Evaluation type
imension, and its purpose in Evaluation purpose. The rationale
ehind capturing this information is to identify the shortcomings
n their evaluations, e.g., how often the studies proposing a tool
re validated with practitioners.

• Evaluation type. It states the type of evaluation the studies
conduct to validate their approaches, such as conducting an
experiment on open-source projects (Experiment), or sur-
veying students, practitioners, or both. For the automated
approaches, we consider various performance metrics, also
known as Information Retrieval (IR) metrics, that are used
to assess the machine/deep learning-based models, such as
Precision, Recall, F1 Measure, or Accuracy under the per-

formance metrics. In case the approach is validated by the s

9

Fig. 2. Relevant papers by years.

authors of the work, we identify the evaluation type as
Authors of the work.

• Evaluation purpose. It states the motivation of evaluation by
authors such as evaluate the functionality, efficiency, appli-
cability, usability, accuracy, comment quality in general, or
importance of attributes.

. Results

As mentioned in Section 2.2.5, we analyze 47 relevant pa-
ers in total. Before answering our four RQs, we present a brief
verview of the metadata (publishing venues) of the papers.
Table 2 highlights the publication venues of these papers.

ost studies were published in top-tier software engineering
onferences (e.g., ICSE) and journals, especially the ones with a
ocus on empirical studies (e.g., EMSE). This means that the SE
ommunity agrees that assessing comment quality is an impor-
ant topic deserving of research effort. Fig. 2 shows the paper
istribution over the past decade, indicating a clear trend of
ncreasing interest of the SE research community in comment
uality assessment. Fig. 3 shows the author distribution of the
elected papers by the institution. For the timeline 1971–2011,



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

w
p
p
e
a
w
p
r
t
S
p
m
i
C

Fig. 3. Relevant papers by countries.
s
F
c
c
a
i
O
a
s
s
t
o
q
l
w
c
t
v
l

Fig. 4. Types of comments per programming language.

e rely on the geographical statistics data from the replication
ackage of our reference study by Zhi et al. (2015), while for the
eriod 2011–2021, and we collect these statistics as follows. For
ach paper, the primary affiliations of all authors are taken into
ccount. If people from different countries co-authored a paper,
e calculate the proportion of a country’s contribution for each
aper so that each paper gets a total score of one to avoid over-
epresenting papers. For example, if five authors of a paper belong
o Switzerland and one belongs to Spain, we assign 5/6 score for
witzerland and 1/6 for Spain for the paper. Comparison with the
revious data allows us to see the evolution of the field, with
ore even distribution of researchers nowadays and (unsurpris-

ng) rise of contributions from southeast Asia, specifically from
hina.

Finding 1. The trend of analyzing comment quality has
increased in the last decade (2011–2020), in part due
to more researchers from southeast Asia working on
the topic.

3.1. RQ1: What types of comments do researchers focus on when
assessing comment quality?

To describe the rationale behind code implementation, various
programming languages use source code comments. Our results
10
show that researchers focus more on some programming lan-
guages compared to others as shown in Fig. 4. This plot highlights
the types of comments on the y-axis; each stack in the bar
hows the ratio of the studies belonging to a particular language.
or instance, the majority (87%) of the studies focus on code
omments from Java, whereas only 15% of the studies focus on
ode comments from Python, and 10% of them focus on C#
nd C++. These results are in contrast to popular languages
ndicated by various developer boards, such as GitHub, Stack
verflow, or TIOBE. For instance, the TIOBE index show Python
nd C languages more popular than Java.7 Similarly, the developer
urvey of 2019 and 2020 by Stack Overflow show that Java
tands fifth after JavaScript, HTML/CSS, SQL, and Python among
he most commonly used programming languages.8 We find only
ne study (Hata et al. (2019)) that seems to address the comment
uality aspect in JavaScript. Given the emerging trend of studies
everaging natural-language information in JavaScript code (Mot-
ani and Brun, 2019; Malik et al., 2019), more research about
omment quality may be needed in this environment. It indicates
hat researchers need to analyze comments of other languages to
erify their proposed approaches and support developers of other
anguages.
Finding 2. 87% of the studies analyze comments from
Java while other languages have not yet received
enough attention from the research community.

As code comments play an important role in describing the
rationale behind source code, various programming languages
use different types of comments to describe code at various ab-
straction levels. For example, Java class comments should present
high-level information about the class, while method comments
should present implementation-level details (Nurvitadhi et al.,
2003). We find that half of the studies (51% of the studies)
focus on all types of comments whereas the other half focus
on specific types of comments, such as inline, method, or TODO
comments. However, we also see in Fig. 4 that studies frequently
focus on method comments and API documentation. This proves

7 https://www.tiobe.com/tiobe-index/ verified on Sep, 2021
8 https://insights.stackoverflow.com/survey/2020

https://www.tiobe.com/tiobe-index/
https://insights.stackoverflow.com/survey/2020


P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

t
A
k
S
c
(
o

a
o
m
o
a
J
e
2
(
t
e
r
d
i
(

i
t
t
Q
a

m

a

i
t
(
(
S
(
f
a
a
c
e
i
d
c
e

i
f
n
a
t
t

he effort the research community is putting into improving
PI quality. While some attention is given to often overlooked
inds of comments, such as license comments (Wu et al. (2017),
hinyama et al. (2018)), TODO comments (Nie et al. (2019)), inline
omments (Pham and Yang (2020)), and deprecation comments
Xi et al. (2019)), no relevant paper seems to focus specifically
n the quality of class or package comments. Recently Rani et al.

studied the characteristics of class comments of Smalltalk in
the Pharo environment9 and highlighted the contexts they differ
from Java and Python class comments, and why the existing
approaches (based on Java, or Python) need heavy adaption for
Smalltalk comments (Rani et al., 2021b,a). This may encourage
more research in that direction, possibly for other programming
languages.

Finding 3. Even though 50% of the studies analyze all
types of code comments, the rest focus on studying
a specific type of comments such as method com-
ments, or API comments, indicating research interest
in leveraging a particular type of comment for specific
development tasks.

Previous work by Zhi et al. showed that a majority of studies
nalyze just one type of system (Zhi et al., 2015). In contrast,
ur findings suggest that the trend of analyzing comments of
ultiple languages and systems is increasing. For example, 80%
f the studies analyzing comments from Python and all studies
nalyzing comments from C++ also analyze comments from
ava. Only Pascarella et al. (Pascarella et al. (2018)) and Zhang
t al. (Zhang et al. (2018)) focus solely on Python (Pascarella et al.,
018; Zhang et al., 2018). However, Zhang et al. (Zhang et al.
2018)) perform the comment analysis work in Python based on
he Java study (Pascarella et al. (2019)) by Pascarella et al. (Zhang
t al., 2018; Pascarella and Bacchelli, 2017). Such trends also
eflect the increasing use of polyglot environments in software
evelopment (Tomassetti and Torchiano, 2014). The ‘‘Other’’ label
n Fig. 4 comprises language-agnostic studies, e.g., Aghajani et al.
2019) or the studies considering less popular languages, e.g., Wu
et al. (2017) focuses on COBOL. We find only one study (Hata et al.
(2019)) that analyzes comments of six programming languages
et al. (Hata et al., 2019).

Finding 4. The trend of analyzing multiple soft-
ware systems of a programming language, or of sev-
eral languages, shows the increasing use of polyglot
environments in software projects.

3.2. RQ2: Which QAs are used to assess code comments?

To characterize the attention that the relevant studies reserve
to each QA over the past decade, Fig. 5 shows all the QAs on the
y-axis and the corresponding years on the x-axis. Each bubble
n the plot indicates both the number of papers by the size of
he bubble and IDs of the studies. Comparing the y-axis with
he QAs in Table 4 demonstrates that our analysis finds new
As with respect to the previous work of Zhi et al. The 10
dditional QAs are: usefulness, use of examples, usability, refer-

ences, preciseness, natural language quality, maintainability, visual
odels, internationalization, documentation technology, content rel-

evance, conciseness, coherence, and availability. However, not all
QAs reported by Zhi et al. for software documentation quality
(highlighted in bold in Table 4) are used in comment quality
assessment. In particular, we find no mention of trustworthiness,
nd similarity QAs even though previous works have highlighted

9 https://pharo.org/
11
the importance of both QAs to have high-quality documenta-
tion (Visconti and Cook, 2004; Ambler, 2007; Dautovic et al.,
2011). Also, Maalej et al. showed in their study that developers
trust code comments more than other kinds of software docu-
mentation (Maalej et al., 2014), indicating the need to develop
approaches to assess the trustworthiness of comments.

Finding 5. Compared to the previous work by Zhi et al.
we find 10 additional QAs researchers use to assess
code comment quality.

Although several QAs received attention in 2013, the detailed
analysis shows that there were mainly two studies (Steidl et al.
(2013), Garousi et al. (2013)) covering several QAs. There is only
one study published in 2014 (Dagenais and Robillard (2014)),
while 2015 sees the first studies focusing on assessing com-
ment quality. One in particular, Garousi et al. (2015), attempts to
cover multiple QAs. The plot also shows which QAs receive the
most attention. A few QAs such as completeness, accuracy, content
relevance, readability are often investigated. The QA consistency
s by far the one that receives constant and consistent atten-
ion across the years, with several in 2017 (Ratol and Robillard
2017), Scalabrino et al. (2017), Zhou et al. (2017), Pascarella et al.
2019)) and 2018 (Fakhoury et al. (2018), Aghajani et al. (2018),
calabrino et al. (2018), Pascarella et al. (2018), Kechagia et al.
2018)). Indeed, the problem of inconsistency has been studied
rom multiple points of view, such as inconsistency between code
nd comments that may emerge after code refactoring (Ratol
nd Robillard (2017)), or the inconsistencies revealed by so-
alled linguistic antipatterns (Aghajani et al. (2018), Arnaoudova
t al. (2016)). Unsurprisingly, the plot shows that up-to-dateness
ncreasingly has received attention in the last three years of the
ecade, given that comments that are not updated together with
ode are also a cause of inconsistency (Wen et al. (2019), Aghajani
t al. (2019)).
A few attributes are rarely investigated, for instance the QAs

nvestigated only by at most two studies over the past decade are
ormat, understandability, spelling & grammar, organization, inter-
ationalization, documentation technology, coherence, conciseness,
uthor related and accessibility. More research would be needed
o assess whether such attributes are intrinsically less important
han others for comments according to practitioners.

Finding 6. While QAs such as consistency and com-
pleteness are frequently used to assess comment qual-
ity, others are rarely investigated, such as conciseness
and coherence.

Another aspect to analyze is whether researchers perceive the
QAs as being the same or not. For example, do all studies mean
the same by consistency, conciseness, accuracy of comments?
We therefore collect the definition of each QA considered in the
study. We find that for various QAs researchers refer to the same
QA but using different terminology. We map such cases to the
Synonyms column presented in Table 4. From this analysis we
find that not all studies precisely define the QAs, or they refer
to their existing definitions while evaluating comments using
them. For instance, the studies (Haouari et al. (2011), Pandita
et al. (2012), Wang et al. (2019), Pham and Yang (2020), Zhai
et al. (2020), Pascarella et al. (2019), Zhang et al. (2018)) do
not mention the specific QAs or their definition. We put such
studies, classifying comment content with the aim to improve
comment quality, under content relevance. On the other hand, in
some studies researchers mention the QAs but not their defini-
tion. For instance, Garousi et al. (2015) refers to various existing
studies for the QA definitions but which QA definition is extracted
from which study is not very clear. Lack of precise definitions

https://pharo.org/


P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

o
a
c
r
i
d
i
n
w
l
p
c
w
a
a

m
W
a
c
t
d

Fig. 5. Frequency of various comment quality QAs over year.
f QAs or having different definitions for the same QAs can cre-
te confusion among developers and researchers while assessing
omment quality. Future work needs to pay attention to either
efer to the existing standard definition of a QA or define it clearly
n the study to ensure the consistency and awareness across
eveloper and scientific communities. In this study, we focus on
dentifying the mention of QAs and their definition if given, and
ot on comparing and standardizing their definition. Such work
ould require not only the existing definitions available in the

iterature for QAs but also collecting how researchers use them in
ractice, and what developers perceive from each QA for source
ode comments, which is out of scope for this work. However,
e provide the list of QAs researchers use for comment quality
ssessment to facilitate future work in mapping their definition
nd standardizing them for code comments.
Although each QA has its own importance and role in com-

ent quality, they are not measured in a mutually exclusive way.
e find cases where a specific QA is measured by measuring

nother QA. For example, accuracy is measured by measuring the
orrectness and completeness of comment, such as ‘‘the documen-
ation is incorrect or incomplete and therefore no longer accurate
ocumentation of an API.’’ (Zhou et al. (2020)) Similarly, up-to-

dateness is measured through consistency of comments (Liu et al.
(2018)) or consistency is evaluated and improved using traceability
(Lucia et al. (2011)). This indicates the dependency of various
QAs on each other, and improving one aspect of comments can
automatically improve other related aspects. However, which
techniques are used to measure which QAs is not yet known.
12
Finding 7. Many studies miss a clear definition of
the QAs they use in their studies. This poses various
challenges for developers and researchers, e.g., under-
standing what a specific QA means, mapping a QA
to other similar QAs, and adapting the approaches to
assess the QA to a certain programming environment.

3.3. RQ3: Which tools and techniques do researchers use to assess
comment QAs?

With respect to each QA, we first identify which techniques
have been used to measure them. We use the dimension Tech-
nique type to capture the type of techniques. Fig. 6 shows that
the majority of the QAs are measured by asking developers to
manually assess it (manual assessment). For instance, QAs such
as coherence, format, organization, understandability, and usabil-
ity are often assessed manually. This indicates the need and
opportunities to automate the measurement of such QAs.

A significant number of studies experimented with various
automated approaches based on machine or deep learning ap-
proaches, but they focus on specific QAs and miss other QAs such
as natural language quality, conciseness, correctness, traceability,
coherence etc. Similarly, another significant portion of studies
uses heuristic-based approaches to measure various QAs. The
limitation of such heuristic-based approaches is their applica-
bility to other software systems and programming languages.
More studies are required to verify the generalizability of such
approaches.



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

p
q
t
c
t

Fig. 6. Types of techniques used to analyze various QAs.
s

Finding 8. Manual assessment is still the most
frequently-used technique to measure various QAs.
Machine learning based techniques are the preferred
automated approach to asses QAs, but the majority
of them focus on specific QAs, such as consistency,
content relevance, and up-to-dateness, while ignoring
other QAs.

We find that the majority of the machine learning-based ap-
roaches are supervised ML approaches. These approaches re-
uire labeling the data and are therefore expensive in terms of
ime and effort. To avoid the longer training time and memory
onsumption of ML strategies, Kallis et al. used fastText to classify
he issues reports on GitHub (Kallis et al., 2021). The fastText
tool uses linear models and has achieved comparable results
in classification to various deep-learning based approaches. A
recent study by Minaee et al. shows that deep learning-based
approaches surpassed common machine learning-based models
in various text analysis areas, such as news categorization and
sentiment analysis (Minaee et al., 2021). We also find some stud-
ies that use deep learning-based techniques partly (Fucci et al.
13
(2019), Wang et al. (2019), Zhai et al. (2020)) along with machine
learning techniques for a few QAs, such as assessing conciseness,
pelling and grammar, and completeness. However, there are still
many QAs that are assessed manually and require considerable
effort to support developers in automatically assessing comment
quality.

Finding 9. In the case of automated approaches to as-
sess various QAs of comments, we observe that deep-
learning based approaches are not yet explored even
though various studies showed that they surpassed
ML-based approaches in text analysis areas.

We see that machine learning-based approaches are used
more often than deep-learning approaches, but whether it is due
to their high accuracy, easy interpretation, or need for a small
dataset is unclear and requires further investigation.

In addition to identifying general techniques, we collect which
metrics and tools have been used to measure various QAs. Table 5
shows various QAs in the column QAs, and metrics and tools used
for each QA in the column Metrics, and Tools respectively. The



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

a
p
a
t
d
t
m
p

t
S
o
m
r
e
i
a
f
t
o
s
c
t
m
i

Table 6
Metrics and tools used for various quality attributes.
Note: the description of each metric is given in Table 7.
QAs Metrics Tools
Accessibility Scalabrino et al. (2017): Accessibility_1, Accessibility_2 Li et al. (2018): Text2KnowledgeGraph

Readability Scalabrino et al. (2017): Readability_1
Scalabrino et al. (2016): Readability_1
Scalabrino et al. (2018): Readability_1

Spelling and Grammar Wang et al. (2019): SpellGrammar_1

Correctness Zhou et al. (2020): Drone

Completeness Sun et al. (2016): Completeness_1, Author_1 Zhou et al. (2020): Drone
Steidl et al. (2013): Completeness_2 Xi et al. (2019): DAAMT
Kechagia et al. (2018): Completeness_3

Consistency Scalabrino et al. (2017): Consistency_1 Ratol and Robillard (2017): Fraco
Scalabrino et al. (2016): Consistency_1 Fucci et al. (2019): RecoDoc, AdDoc
Scalabrino et al. (2018): Consistency_1 Zhou et al. (2020): Drone
Iammarino et al. (2020): Consistency_2 Lucia et al. (2011): Coconut
Wu et al. (2017): LicenseConsistency_1 Zhou et al. (2017): Zhou et. al

Arnaoudova et al. (2016): LAPD
Pascarella et al. (2018): PyID

Traceability Fucci et al. (2019): RecoDoc
Lucia et al. (2011): Coconut

Up-to-datedness Fucci et al. (2019): RecoDoc, AdDoc
Nie et al. (2019): Trigit

Accuracy McBurney and McMillan (2016): Accuracy_1 Zhou et al. (2020): Drone
Xi et al. (2019): DAAMT

Coherence Steidl et al. (2013). Coherence_1, Coherence_2
Sun et al. (2016): Coherence_3
Corazza et al. (2018): Coherence_4

Maintainability Rahman et al. (2015): Coherence_4 Pham and Yang (2020): Pham et. al.

Understandability Wang et al. (2019): Understandability_1

Usability Rama and Kak (2015): Usability_1 Robillard and Chhetri (2015): Krec
description of the collected metrics is presented in Table 7. We
can see that out of 21, only 10 QAs have metrics defined for them.

A software metric is a function that takes some software data
s input and provides a numerical value as an output. The output
rovides the degree to which the software possesses a certain
ttribute affecting its quality (Committee et al., 1993). To limit
he incorrect interpretation of the metric, threshold values are
efined. However, the threshold value may change according to
he type of comments analyzed, and the interpretation of the
etric output may vary in turn. We report threshold values, if
resent, for the collected metrics.
For readability QA, researchers were often found to be using

he same metric (Scalabrino et al. (2017), Scalabrino et al. (2016),
calabrino et al. (2018)). As developers spend significant amount
f time reading code, including comments, having readable com-
ent can help them in understanding code easier. Yet readability

emains a subjective concept. Several studies, such as Scalabrino
t al. (2017), Scalabrino et al. (2016), Scalabrino et al. (2018)
dentified various syntactic and textual features for source code
nd comments. However, in context of code comments, they
ocus on the Flesch–Kincaid index method, which is typically used
o assess readability of natural language text. Since comments
ften consist of a mix of source code and natural language text,
uch methods can have disadvantages. For example, developers
an refer to the same code concept differently in comments, and
hey can structure their information differently. Thus, formulating
etrics that consider the special context of code comments can

mprove the assessment of readability of comments.
Another popular metric is Consistency_1 used for assessing

consistency between comments and code (Scalabrino et al. (2017),
Scalabrino et al. (2016), Scalabrino et al. (2018)). This metric mea-
sures the overlap between the terms of method comments and
method body. These studies assume that the higher the overlap,
better the readability of that code. Similarly, metrics (coherence_1,
14
coherence_3, coherence_4) used for measuring the coherence QA
suggest higher overlap between comments and code. However,
having too many overlapping words can defy the purpose of
comments and can lead to redundant comments. Using such
metrics, a comment containing only rationale information about
a method or class might be qualified as an incoherent or incon-
sistent comment whereas such comments can be very helpful in
providing additional important information. Although metrics can
help developers easily estimate the quality of comments, their
sensitivity towards various QAs can degrade comment quality
overall. More research is required to know the implication of
given metrics on various QAs or combinations of QAs.

Finding 10. Nearly 25% of the studies use metric-based
methods to measure comment quality. However, the
metrics are defined or used for only 10 QAs out of
21QAs.
3.4. RQ4: What kinds of contribution do studies often make?

Research types. As a typical development cycle can contain var-
ious research tasks, such as investigation of a problem, or val-
idation of a solution, we collect which types of research are
performed for the comment quality assessment domain, and what
kinds of solutions researchers often contribute. We categorize
the papers according to the research type dimension and show
its results in Fig. 7. The results show that the studies often
conduct validation research (investigating the properties of a
solution) followed by the solution proposal (offering a proof-of-
concept method or technique). However, very few studies focus
on evaluation research (investigating the problem or a technique
implementation in practice). We find only one study performing
a replication study (Stapleton et al. (2020)). Given the importance
of research replicability in any field, future work needs to fo-
cus more on evaluating the proposed solution and testing their
replicability in this domain.



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

P
t
4
c
a
b
o
a
A
f
o
6
a

Table 7
Description of each metric mentioned in Table 6.
Metrics Description
Accessibility_1 MIDQ: (Documentable items of a method + readability of comments)/2. [Scalabrino et al. (2017)]

Accessibility_2 AEDQ: Identify all Stack overflow discussions that have ‘‘how to’’ words and the class name in the title. [Scalabrino et al.
(2017)]

Accuracy_1 Short Text Semantic Similarity (STSS): the intersection of keywords between summaries and source code, STASIS (word
semantic similarity, sentence semantic similarity, and word order similarity), LSS (Lightweight Semantic Similarity).
[McBurney and McMillan (2016)]

Author_1 A class comment should contain authorship. Check the presence and absence of the @author tag with the following name.
[Sun et al. (2016)]

Coherence_1 The similarity between words from method comments and method names where similarity is computed using Levenshtein
distance. The value should be between 0 and 0.5 to have a coherent comment. [Steidl et al. (2013)]

Coherence_2 The length of comments should be between 2 words to 30 words. [Steidl et al. (2013)]

Coherence_3 Percentage of the number of class or method’s words contained in the class or method comments divided by the total class
or method’s words. The value should be above or equal to 0.5. [Sun et al. (2016)]

Coherence_4 There is coherence between the comment and the implementation of a method when they have a high lexical similarity,
where lexical similarity is computed using cosine similarity. [Corazza et al. (2018)]

Completeness_1 A class comment should contain a description and authorship. A method should contain comments if it is complex (more
than three method invocation) and have 30 LOC. [Sun et al. (2016)]

Completeness_2 How many of the public classes, types, and methods have a comment preceding them. [Steidl et al. (2013)]

Completeness_3 Exceptions that are present in App Programs, Crashes, and API source code but not in API reference documentation.
[Kechagia et al. (2018)]

Consistency_1 The overlap between the terms used in a method comment and the terms used in the method body. They correlate a higher
value of CIC with a higher readability level of that code. [Scalabrino et al. (2017), Scalabrino et al. (2016), Scalabrino et al.
(2018)]

Consistency_2 The Kullback–Leibler divergence is a measure that finds the difference between two probability distributions. [Iammarino
et al. (2020)]

LicenseConsistency_1 Two similar source code files have different licenses. Find the number of files in a group, number of different licenses in the
group, number of files with an unknown license in the group, number of files without any license in the group, and number
of licenses in the GPL family. [Wu et al. (2017)]

Readability_1 Flesch reading-ease test. [Scalabrino et al. (2017), Scalabrino et al. (2016), Scalabrino et al. (2018)]

SpellGrammar_1 The sentence has no subject or predicate, or has incomplete punctuations (e.g., the right parenthesis is missing). [Wang et al.
(2019)]

Understandability_1 Remove a sentence if it is incomplete, contains code elements, is a question, or it mentions the concept in its subordinate
clauses. [Wang et al. (2019)]

Usability_1 ADI: number of words in the method comments. The threshold is decided based on the simple average of the ADI for all
method declaration. [Rama and Kak (2015)]
Fig. 7. Types of contribution for each research type.
F

aper contribution types. By categorizing the papers according to
he paper contribution definition, Figs. 7 and 8 show that over
4% of papers propose an approach (method/technique) to assess
ode comments. A large part (75%) of them are heuristics-based
pproaches, e.g., Zhou et al. and Wang et al. present such NLP
ased heuristics (S9, Wang et al. (2019)). A few approaches rely
n manual assessments. As an example, consider how taxonomies
ssessing comment quality have emerged (Wen et al., 2019;
ghajani et al., 2019). Models are the second contribution by
requency, which makes sense considering the increasing trend
f leveraging machine learning during the considered decade:
0% of the relevant papers proposing models are based on such
pproaches. The label Empirical results comprises studies which
15
mainly offer insights through authors’ observations (e.g., Aghajani
et al. (2018), Wen et al. (2019), Aghajani et al. (2019), Stapleton
et al. (2020), Garousi et al. (2015)). Finally, given the impor-
tant role that metrics have in software engineering (Fenton and
Bieman, 2014; Meneely et al., 2012), it is valuable to look into
metrics that are proposed or used to assess code comment quality
as well. For example, three studies (Sun et al. (2016), Rama
and Kak (2015), and McBurney and McMillan (2016)) contribute
metrics for completeness, accuracy, or coherence whereas other
studies use existing established metrics, e.g., Scalabrino et al.
(2017), Scalabrino et al. (2016), or Scalabrino et al. (2018) com-
pute the readability of comments using the metric named the
lesch–Kincaid index.



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

T
s
l
3
d
s
a
o

D
s
p
(
p
t
G
s
e

i
s
(
e
s

Fig. 8. Types of evaluation for each paper contribution type.
m
i
e
t
c
a
t
c

M
s
a
c
u
t
c
f
c
r
r
d
s
t

ool availability. Previous work indicates the developers’ effort in
eeking tools to assess documentation quality, and highlights the
ack of such tools (Aghajani et al., 2019). In our study, we find that
2% of the studies propose tools to assess specific QAs, mainly for
etecting inconsistencies between code and comments. Of these
tudies proposing tools, 60% provide a link to them. The lack of
direct link in the remaining 40% can hinder the reproducibility
f such studies.

ataset availability. In terms of dataset availability, 49% of the
tudies provide a link to a replication package. Of the remaining
apers, some provide a link to the case studies they analyze
typically open-source projects) (Haouari et al., 2011), build on
reviously existing datasets (Scalabrino et al., 2018), or mention
he reasons why they could not provide a dataset. For instance,
arousi et al. indicated the company policy as a reason to not to
hare the analyzed documentation in their case study (Garousi
t al., 2015).

Finding 11. Nearly 50% of the studies still are lacking
on the replicability dimension, with their respective
dataset or tool often not publicly accessible.

3.5. RQ5: How do researchers evaluate their comment quality assess-
ment studies?

Fig. 8 shows how authors evaluate their contributions. We
see that code comment assessment studies generally lack a sys-
tematic evaluation, surveying only students, or conducting case
studies on specific projects only. Most of the time, an experiment
is conducted without assessing the results through any kind of
external expertise judgment. Hence, only 30% of the relevant
studies survey practitioners to evaluate their approach. This ten-
dency leads to several disadvantages. First, it is difficult to assess
the extent to which a certain approach may overfit specific case
studies while overlooking others. Second, approaches may be
unaware of the real needs and interests of project developers.
Finally, the approaches may tend to focus too little on real-world
software projects (such as large software products evolving at
a fast pace in industrial environments). Similarly, when a new
method or technique or comment classification model is proposed,
t is often assessed based on conventional performance metrics,
uch as Precision, Recall, or F1 (Steidl et al. (2013), Pandita et al.
2012), Ratol and Robillard (2017), Pascarella et al. (2019), Zhang
t al. (2018) etc..) and rarely are the results verified in an industry
etting or with practitioners.
16
Finding 12. Many code comment assessment stud-
ies still lack systematic industrial evaluations for their
proposed approaches, such as evaluating the metric,
model, or method/technique with practitioners.

4. Discussion

Below we detail our observations about state of the art in com-
ment quality analysis together with implications and suggestions
for future research.

Comment types. The analysis of the comment quality assessment
studies in the last decade shows that the trend of analyzing
comments from multiple languages and systems is increasing
compared to the previous decade where a majority of the studies
focus on one system (Zhi et al., 2015). It reflects the increasing use
of polyglot environments in software development (Tomassetti
and Torchiano, 2014). Additionally, while in the past researchers
focused on the quality of code comments in general terms, there
is a new trend of studies that narrow their research investi-
gation to particular comment types (methods, TODOs, depre-
cation, inline comments), indicating the increasing interest of
researchers in supporting developers in providing a particular
type of information for program comprehension and maintenance
tasks.

Emerging QAs. Our analysis of the last decade of studies on code
comment assessment shows that new QAs (coherence, conciseness,
aintainability, understandability etc..), which were not identified

n previous work (Zhi et al., 2015), are now being investigated and
xplored by researchers. This change can be explained by the fact
hat while in the past researchers focused on the quality of code
omments in general terms, in the last decade there has been
new trend of studies that narrow their research investigation

o specific comment types (methods, TODOs, deprecation, inline
omments) and related QAs.

apping QAs. As a consequence of this shift of focus towards
pecific comment types, the same QAs used in prior studies can
ssume different definition nuances, depending on the kind of
omments considered. For instance, let us consider how the QA
p-to-dateness, referred to in studies on code-comment inconsis-
ency, assumes a different interpretation in the context of TODO
omments. A TODO comment that becomes outdated describes a
eature that is not being implemented, which means that such a
omment should be addressed within some deadline, and then
emoved from the code base (Nie et al. (2019)) when either the
espective code is written and potentially documented with a
ifferent comment, or the feature is abandoned altogether. At the
ame time, more research nowadays is conducted to understand
he relations between different QAs.



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

M
c
t
s
e
(
(
p
a
a
h
l
J
f
m
t
m
l
q

5

c
t
d
d

I
t
d
t
l
c

G
s
t
g
a
m
d
P
e
c
v
p
o
i
w

I
t
i
a
I
t
t

apping taxonomies. In recent years, several taxonomies con-
erning code comments have been proposed, however, all of
hem are characterized by a rather different focus, such as the
cope of the comments (Steidl et al. (2013)), the information
mbedded in the comment (Pascarella et al. (2019), Zhang et al.
2018)), the issues related to specific comment types (Fucci et al.
2019), Shinyama et al. (2018), Liu et al. (2018)), as well as the
rogramming language they belong to. This suggests the need for
comprehensive code comment taxonomy or model that maps
ll these aspects and definitions in a more coherent manner to
ave a better overview of developer commenting practices across
anguages. Rani et al. adapted the code comment taxonomies of
ava and Python (Pascarella et al. (2019), Zhang et al. (2018))
or class comments of Java and Python (Rani et al., 2021a). They
apped the taxonomies to Smalltalk class comments and found

hat developers write similar kinds of information in class com-
ents across languages. Such a mapping can encourage building

anguage-independent approaches for other aspects of comment
uality evaluation.

. Implication for future studies

Besides the aspects discussed above, future studies on code
omment assessment should be devoted to filling the gaps of
he last decade of research as well as coping with the needs of
evelopers interested in leveraging comment assessment tools in
ifferent program languages.

nvestigating specific comment types (RQ1). Several works showed
he importance of different types of comments to achieve specific
evelopment tasks and understanding about code. Although, the
rend of analyzing specific comment types has increased over the
ast decade, there are still comment types (e.g., class and package
omments) that need more attention.

eneralizing across languages (RQ1). Given the preponderance of
tudies focusing on the Java language, and considering that statis-
ics from various developer boards (StackOverflow, GitHub) sug-
est that there are other popular languages as well (e.g., Python
nd JavaScript), more studies on analyzing various types of com-
ents in these languages are needed. Interesting questions in this
irection could concern the comparison of practices (e.g., given
ython is often considered to be ‘‘self-explainable’’, do develop-
rs write fewer comments in Python?) and tools used to write
ode comments in different languages (e.g., popularity of Javadoc
.s. Pydoc). Similarly, whether various programming language
aradigms, such as functional versus object-oriented languages,
r statically-typed versus dynamic-typed languages, play a role
n the way developers embed information in comments, or the
ay they treat comments, needs further work in this direction.

dentifying QAs (RQ2). Our results show various QAs, e.g., consis-
ency, completeness, and accuracy that are frequently considered
n assessing comment quality. Additionally, various metrics, tools,
nd techniques that are proposed to assess them automatically.
ndeed, some QAs are largely overlooked in the literature, e.g.,
here is not enough research on approaches and automated tools
hat ensure that comments are accessible, trustworthy, and under-
standable, despite numerous studies suggesting that having good
code comments brings several benefits.

Standardizing QAs (RQ2). We identify various QAs that researchers
consider assessing comment quality. Not all of these QAs are
unique i.e., they have conceptual overlap (based on their def-
initions in Table 4 and measurement techniques in Table 6).
For example, the definition of up-to-datedness and consistency
mention of keeping comments updated. Similarly, the definition

of coherence and similarity focus on the relatedness between code

17
and comments. In this study, we mainly focus on identifying
various QAs from the literature and on extracting metrics, tools,
and techniques to measure them. Standardizing their definition
can be an essential next step in the direction of comment quality
assessment research. Since not every study provides the defini-
tion of mentioned QAs, such a work will require surveying the
authors to understand how they perceive various QAs and where
they refer to for QAs definitions.

Comment smells (RQ2). Although there is no standard defini-
tion of good or bad comments, many studies indicate bloated
comments (or non-informative comments), redundant comments
(contain same information as in the code), or inconsistent com-
ments (e.g., contain conflicting information compared to the code)
as code or comment smells. Arnaoudva et al. identified various
LAs that developers perceive as poor practices and should be
avoided (Arnaoudova et al., 2016). Still, what information is vi-
tal in comments is a subjective concept and can sometimes be
contradictory. For instance, Oracle’s coding style guideline sug-
gests including author information in class comments, whereas
the Apache style guideline suggests removing it as it can be
inferred from the version control system (Anon, 2020). We find
that researchers use the completeness QA to identify informative
comments. They define various metrics to assess the complete-
ness of comments, as shown in Table 7. These metrics check
the presence of specific information, such as summary, author,
or exception information in class or method comments Future
work can investigate the definition of good and bad comments
by surveying various sources, such as documentation guidelines,
researchers, and developers, and comparing the sources across to
improve the understanding of high-quality comments. Such work
can inspire the development of more metrics and tools to ensure
the adherence of comments to the standards.

Automated tools and techniques (RQ3). Finally, concerning tech-
niques to assess comment quality, we observed that those based
on AI, such as NLP and ML, were increasingly used in the past
decade. On the other hand, deep learning techniques do not
yet seem to have gained a foothold within the community for
assessing comment quality. Since code comment generation is
becoming more and more popular also due to such advanced
techniques emerging, we envision that future work may study
techniques and metrics to assess the quality of automatically
generated code comments.

Research evaluation (RQ4 and RQ5). Scientific methods play a
crucial role in the growth of engineering knowledge (Vincenti
et al., 1990). Several studies have indicated the weak validation in
software engineering (Zelkowitz and Wallace, 1997). We also find
that several studies propose solutions but do not evaluate their
solution. Also, various approaches were validated only by the
authors of the work or by surveying students. However, we need
to do all steps as engineering science researchers do, empirically
investigating the problems, proposing solutions, and validating
those solutions.

In contrast to seven research types listed in Table 4, we ob-
serve only limited types of research studies. For example, we do
not find any philosophical, opinion, or experience papers for the
comment quality assessment domain even though this domain is
more than a decade old now. Philosophical papers sketch a new
perspective of looking at things, conceptual frameworks, metrics
etc. Opinion papers present good or bad opinions of authors about
something, such as different approaches to assess quality, us-
ing particular frameworks etc. Similarly, experience papers often
present insights about lessons learned or anecdotes by authors
in using tools or techniques in practice. Such papers help tool
designers better shape their future tools.



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

6

T
u
d
p
i
a
c

o
c
a
u
T
r
t
c
n
k
a
i
o
k
o
p
n
v
f

u
e

c
b
c
t
r
v
t
m

p
a
l
m
v
i
r
I
i
o
o
i
w
e
t
a
w
p
u
t
w
t
d
q

7

m
u
d

V
i
t
h
(
p
T
f
p
e
p
a
n
s
c
m
c
i
i
d
l
a
s
t
m
y

v
f
a
2
2
2
a
i
i
b
b
d
s
c
2
p
c
n
p
i
c
O
c

t
a
e
s
D
S
u

. Threats to validity

We now outline potential threats to the validity of our study.
hreats to construct validity mainly concern the measurements
sed in the evaluation process. In this case, threats can be mainly
ue to (i) the imprecision in the automated selection of relevant
apers (i.e., the three-step search on the conference proceed-
ngs based on regular expressions), and to (ii) the subjectivity
nd error-proneness of the subsequent manual classification and
ategorization of relevant papers.
We mitigated the first threat by manually classifying a sample

f relevant papers from a set of conference proceedings and
ompared this classification with the one recommended by the
utomated approach based on regular expressions. This allowed
s to incrementally improve the initial set of regular expressions.
o avoid any bias in the selection of the papers, we selected
egular expression in a deterministic way (as detailed in Sec-
ion 2): We first examined the definition of documentation and
omment in IEEE Standard Glossary of Software Engineering Termi-
ology (IEEE Standard 610.12–1990) and identified the first set of
eywords comment, documentation, and specification; we further
dded comment-related keywords that are frequently mentioned
n the context of code comments. Moreover, we formulated a set
f keywords to discard irrelevant studies that presented similar
eywords (e.g., code review comments). To verify the correctness
f the final set of keywords, we manually scanned the full venue
roceedings metadata to make sure the set of keywords did
ot prune relevant papers. This iterative approach allowed us to
erify that our keyword-based filtering approach does not lead to
alse negatives for the selected venues.

We mitigated the second threat by applying multi-stage man-
al classification of conference proceedings, involving multiple
valuators and reviewers, as detailed in Section 2.
Threats to internal validity concern confounding factors that

ould influence our results and findings. A possible source of
ias might be related to the way we selected and analyzed the
onference proceedings. To deal with potential threats regarding
he actual regular expressions considered for the selection of
elevant studies, we created regular expressions that tend to be
ery inclusive, i.e., that select papers that are marginally related
o the topic of interest, and we take a final decision only after a
anual assessment.
Threats to external validity concern the generalization and com-

leteness of results and findings. Although the number of an-
lyzed papers is large, since it involves studies spanning the
ast ten years of research, there is still the possibility that we
issed some relevant studies. We mitigate this threat by applying
arious selection criteria to select relevant conference proceed-
ngs, considering the well-established venues and communities
elated to code comment-related studies, as detailed in Section 2.
t is important to mention that this paper intentionally limits
ts scope in two ways, which threatens to the completeness
f the study results and findings. First of all, we mainly focus
n research work investigating code comment quality without
ntegrating studies from industry tracks of conference venues (as
as done in previous studies thematically close to ours (Ding
t al., 2014; Zhi et al., 2015)). Second, we focus on those studies
hat involve manually written code comments in order to avoid
uto-generated comments (already investigated in recent related
ork (Song et al., 2019; Nazar et al., 2016)). To further limit
otential threats concerning the completeness of our study, we
se the snowball approach to reach potentially relevant studies
hat we could have missed with our venue selection. However,
e support the argument of Garousi et al. (2016) who report
hat a multivocal literature review, with further replications, is
esirable to make the overall interpretation of code comment

uality attributes more complete for future work. r

18
. Related work

This section discusses the literature concerning (i) studies
otivating the importance of quality attributes for software doc-
mentation, (ii) comment quality aspects, and (iii) recent SLRs
iscussing topics closely related to our investigation.
Important quality attributes for software documentation.

arious research works conducted surveys with developers to
dentify important quality attributes of good software documen-
ation. Forward and Lethbridge surveyed 48 developers, and
ighlighted developer concerns about outdated documentation
Forward and Lethbridge, 2002). Chen and Huang surveyed 137
roject managers and software engineers (Chen and Huang, 2009).
heir study highlighted the typical quality problems developers
ace in maintaining software documentation: adequacy, com-
lete, traceability, consistency, and trustworthiness. Robillard
t al. conducted personal interviews with 80 practitioners and
resented the important attributes for good documentation, such
s including examples and usage information, complete, orga-
ized, and better design (Robillard, 2009). Similarly, Plosch et al.
urveyed 88 practitioners and identified consistency, clarity, ac-
uracy, readability, organization, and understandability as the
ost important attributes (Plösch et al., 2014). They also indi-
ated that developers do not consider documentation standards
mportant (e.g., ISO 26514:2008, IEEE Std.1063:2001). Sohan et al.
n their survey study highlighted the importance of examples in
ocumentation (Sohan et al., 2017). The majority of the high-
ighted documentation quality attributes apply to code comments
s well (as a type of software documentation). However, which
pecific quality attributes (e.g., outdated, complete, consistent,
raceable) researchers consider important to assess code com-
ent quality and how these quality attributes are measured is
et to study.
Comment quality. Evaluating comment quality according to

arious aspects has gained a lot of attention from researchers,
or instance, assessing their adequacy (Arthur and Stevens, 1989)
nd their content quality (Khamis et al., 2010; Steidl et al.,
013), analyzing co-evolution of comments and code (Fluri et al.,
009), or detecting inconsistent comments (Ratol and Robillard,
017; Wen et al., 2019). Several works have proposed tools
nd techniques for the automatic assessment of comment qual-
ty (Khamis et al., 2010; Steidl et al., 2013; Yu et al., 2016). For
nstance, Khamis et al. assessed the quality of inline comments
ased on consistency and language quality using a heuristic-
ased approach (Khamis et al., 2010). Steidl et al. evaluated
ocumentation comment quality based on four quality attributes,
uch as consistency, coherence, completeness, and usefulness of
omments using a machine learning-based model (Steidl et al.,
013). Zhou et al. proposed a heuristic and natural language
rocessing-based technique to detect incomplete and incorrect
omments (Zhou et al., 2017). These works have proposed various
ew quality attributes to assess comment quality, such as com-
leteness, coherence, and language quality, that are not included
n previous quality models. However, a unifying overview of
omment QAs and their assessment approaches is still missing.
ur paper complements these previous works by investigating
omment QAs discussed in the last decade of research.
Previous SLRs on code comments and software documen-

ation. In recent years, SLRs have been conducted to investigate
gile software development aspects in open-source projects (Silva
t al., 2017), the usage of ontologies in software process as-
essment (Tarhan and Giray, 2017), and improvement aspects in
evOps process and practices (Badshah et al., 2020). Previous
LRs in the field investigated code comments and software doc-
mentation (Ding et al., 2014; Zhi et al., 2015), which are closely
elated to our work. Specifically, Ding et al. conducted an SLR to



P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

e
d
T
c
v
i
u
c
t
s
a
i
s
(
s
t
a
m

8

r
i
s
r
s
t
e
c
g
o
c
z
c
i
m
m
r
n
o
t
l
r
v

C

M
W
t
M
e
c
W
t
o
A
M
W

D

f
a

xplore the usage of knowledge-based approaches in software
ocumentation (Ding et al., 2014). They identified twelve QAs.
hey also highlighted the need to improve QAs, especially con-
iseness, credibility, and unambiguity. Zhi et al. have explored
arious types of software documentation to see which QAs impact
t (Zhi et al., 2015). Both of the studies considered the timeline
ntil 2011. Additionally, they have not studied how the proposed
omment quality assessment approaches are computed in prac-
ice for comments. Inspired by these related studies, we focused
pecifically on the code comment aspect. Song et al. conducted
literature review on code comment generation techniques, and

ndicated the need to design an objective comment quality as-
essment model (Song et al., 2019). Complementarily, Nazar et al.
2016) presented a literature review in the field of summarizing
oftware artifacts, which included source code comment genera-
ion as well as bug reports, mailing lists, and developer discussion
rtifacts. Our work complements these previous studies since we
ainly focus on manually written comments.

. Conclusion

In this work, we present the results of a systematic literature
eview on source code comment quality evaluation practices
n the decade 2011— 2020. We analyze 2353 publications and
tudy 47 of them to understand of effort of Software Engineering
esearchers, in terms of what type of comments they focus their
tudies on, what QAs they consider relevant, what techniques
hey resort to in order to assess their QAs, and finally, how they
valuate their contributions. Our findings show that most studies
onsider only comments in Java source files, and thus may not
eneralize to comments of other languages, and they focus on
nly a few QAs, especially on consistency between code and
omments. Some QAs, such as conciseness, coherence, organi-
ation, and usefulness, are rarely investigated. As coherent and
oncise comments play an important role in program understand-
ng, establishing approaches to assess these attributes requires
ore attention from the community. We also observe that the
ajority of the approaches appear to be based on heuristics

ather than machine learning or other techniques and, in general,
eed better evaluation. Such approaches require validation on
ther languages and projects to generalize them. Though the
rend of analyzing comments appearing in multiple projects and
anguages is increasing compared to the previous decade, as
eported by Zhi et al. the approaches still need more thorough
alidation (Zhi et al., 2015).

RediT authorship contribution statement

Pooja Rani: Conceptualization, Data curation, Software,
ethodology, Investigation, Validation, Writing – original draft,
riting – review & editing, Visualization, Project administra-

ion. Arianna Blasi: Conceptualization, Data curation, Software,
ethodology, Investigation, Validation, Writing – review &
diting, Visualization. Nataliia Stulova: Conceptualization, Data
uration, Software, Methodology, Investigation, Validation,
riting – review & editing, Visualization, Project adminis-

ration. Sebastiano Panichella: Conceptualization, Methodol-
gy, Investigation, Validation, Writing – review & editing.
lessandra Gorla: Conceptualization, Data curation, Software,
ethodology, Writing – review & editing. Oscar Nierstrasz:
riting – review & editing, Supervision, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing
inancial interests or personal relationships that could have
ppeared to influence the work reported in this paper.
19
Data availability

I have shared a replication package

Acknowledgment

We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project ‘‘Agile Software As-
sistance’’ (SNSF project No. 200020-181973, Feb 1, 2019–Apr 30,
2022) and the Spanish Government through the SCUM grant
RTI2018-102043-B-I00, and the Madrid Regional through the
project BLOQUES. We also acknowledge the Horizon 2020 (EU
Commission) support for the project COSMOS (DevOps for Com-
plex Cyber-physical Systems), Project No. 957254-COSMOS.

References

Abidi, M., Khomh, F., 2020. Towards the definition of patterns and code smells for
multi-language systems. In: EuroPLoP ’20: European Conference on Pattern
Languages of Programs 2020, Virtual Event, Germany, 1-4 July, 2020. ACM,
pp. 37:1–37:13. http://dx.doi.org/10.1145/3424771.3424792.

Aghajani, E., Nagy, C., Bavota, G., Lanza, M., 2018. A large-scale empirical
study on linguistic antipatterns affecting APIs. In: 2018 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2018, Madrid,
Spain, September 23-29, 2018. IEEE Computer Society, pp. 25–35. http:
//dx.doi.org/10.1109/ICSME.2018.00012.

Aghajani, E., Nagy, C., Linares-Vásquez, M., Moreno, L., Bavota, G., Lanza, M.,
Shepherd, D.C., 2020. Software documentation: the practitioners’ perspective.
In: 2020 IEEE/ACM 42nd International Conference on Software Engineering.
ICSE, IEEE, pp. 590–601.

Aghajani, E., Nagy, C., Vega-Márquez, O.L., Linares-Vásquez, M., Moreno, L.,
Bavota, G., Lanza, M., 2019. Software documentation issues unveiled. In:
Atlee, J.M., Bultan, T., Whittle, J. (Eds.), Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May
25-31, 2019. IEEE / ACM, pp. 1199–1210. http://dx.doi.org/10.1109/ICSE.2019.
00122.

Allamanis, M., Barr, E.T., Bird, C., Sutton, C., 2014. Learning natural coding con-
ventions. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE. ACM, New York, NY, USA, pp.
281–293. http://dx.doi.org/10.1145/2635868.2635883.

Ambler, S.W., 2007. Agile/lean documentation: strategies for agile software
development. Retrieved June 20, 2007.

Anon, 0000. Oracle documentation guidelines, https://www.oracle.com/
technical-resources/articles/java/javadoc-tool.html, (verified on 10 2020).

Arnaoudova, V., Penta, M.D., Antoniol, G., 2016. Linguistic antipatterns: what they
are and how developers perceive them. Empir. Softw. Eng. 21 (1), 104–158.
http://dx.doi.org/10.1007/s10664-014-9350-8.

Arthur, J.D., Stevens, K.T., 1989. Assessing the adequacy of documenta-
tion through document quality indicators. In: Proceedings. Conference on
Software Maintenance-1989. IEEE, pp. 40–49.

Auyang, S.Y., 2006. Engineering-an Endless Frontier. Harvard University Press.
Badshah, S., Khan, A.A., Khan, B., 2020. Towards process improvement in

devops: A systematic literature review. In: Li, J., Jaccheri, L., Dingsoyr, T.,
Chitchyan, R. (Eds.), EASE ’20: Evaluation and Assessment in Software
Engineering, Trondheim, Norway, April 15-17, 2020. ACM, pp. 427–433.
http://dx.doi.org/10.1145/3383219.3383280.

Chen, J.-C., Huang, S.-J., 2009. An empirical analysis of the impact of software
development problem factors on software maintainability. J. Syst. Softw. 82
(6), 981–992.

Committee, S.E.S., et al., 1993. Ieee Standard for a Software Quality Met-
rics Methodology. IEEE Std 1061-1992, pp. 1–96. http://dx.doi.org/10.1109/
IEEESTD.1993.115124.

Corazza, A., Maggio, V., Scanniello, G., 2018. Coherence of comments and method
implementations: A dataset and an empirical investigation. Softw. Qual. J. 26
(2), 751–777.

Dagenais, B., Robillard, M.P., 2014. Using traceability links to recommend
adaptive changes for documentation evolution. IEEE Trans. Softw. Eng. 40
(11), 1126–1146. http://dx.doi.org/10.1109/TSE.2014.2347969.

Dautovic, A., Plösch, R., Saft, M., 2011. Automated quality defect detection
in software development documents. In: First International Workshop on
Model-Driven Software Migration (MDSM 2011), p. 29.

de Souza, S.C.B., Anquetil, N., de Oliveira, K.M., 2005. A study of the docu-
mentation essential to software maintenance. In: Proceedings of the 23rd
Annual International Conference on Design of Communication: Documenting
& Designing for Pervasive Information, SIGDOC ’05. ACM, New York, NY, USA,
pp. 68–75. http://dx.doi.org/10.1145/1085313.1085331.

http://dx.doi.org/10.1145/3424771.3424792
http://dx.doi.org/10.1109/ICSME.2018.00012
http://dx.doi.org/10.1109/ICSME.2018.00012
http://dx.doi.org/10.1109/ICSME.2018.00012
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb3
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb3
http://dx.doi.org/10.1109/ICSE.2019.00122
http://dx.doi.org/10.1109/ICSE.2019.00122
http://dx.doi.org/10.1109/ICSE.2019.00122
http://dx.doi.org/10.1145/2635868.2635883
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb6
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb6
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb6
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
http://dx.doi.org/10.1007/s10664-014-9350-8
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb9
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb9
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb9
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb9
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb9
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb10
http://dx.doi.org/10.1145/3383219.3383280
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb12
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb12
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb12
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb12
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb12
http://dx.doi.org/10.1109/IEEESTD.1993.115124
http://dx.doi.org/10.1109/IEEESTD.1993.115124
http://dx.doi.org/10.1109/IEEESTD.1993.115124
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb14
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb14
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb14
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb14
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb14
http://dx.doi.org/10.1109/TSE.2014.2347969
http://dx.doi.org/10.1145/1085313.1085331


P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

D

D

F

F

F

F

F

G

G

G

G

H

H

I

K

K

K

K

K

K

K

ekel, U., Herbsleb, J.D., 2009. Reading the documentation of invoked API
functions in program comprehension. In: 2009 IEEE 17th International
Conference on Program Comprehension. IEEE, pp. 168–177.

ing, W., Liang, P., Tang, A., Van Vliet, H., 2014. Knowledge-based approaches in
software documentation: A systematic literature review. Inf. Softw. Technol.
56 (6), 545–567.

akhoury, S., Ma, Y., Arnaoudova, V., Adesope, O.O., 2018. The effect of poor
source code lexicon and readability on developers’ cognitive load. In:
Khomh, F., Roy, C.K., Siegmund, J. (Eds.), Proceedings of the 26th Conference
on Program Comprehension, ICPC 2018, Gothenburg, Sweden, May 27-28,
2018. ACM, pp. 286–296. http://dx.doi.org/10.1145/3196321.3196347.

enton, N., Bieman, J., 2014. Software Metrics: A Rigorous and Practical Approach.
CRC Press.

luri, B., Würsch, M., Giger, E., Gall, H.C., 2009. Analyzing the co-evolution of
comments and source code. Softw. Qual. J. 17 (4), 367–394.

orward, A., Lethbridge, T.C., 2002. The relevance of software documentation,
tools and technologies: A survey. In: Proceedings of the 2002 ACM Sympo-
sium on Document Engineering, DocEng ’02. ACM, New York, NY, USA, pp.
26–33. http://dx.doi.org/10.1145/585058.585065.

ucci, D., Mollaalizadehbahnemiri, A., Maalej, W., 2019. On using machine learn-
ing to identify knowledge in API reference documentation. In: Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp.
109–119.

arousi, V., Felderer, M., Mäntylä, M.V., 2016. The need for multivocal literature
reviews in software engineering: complementing systematic literature re-
views with grey literature. In: Beecham, S., Kitchenham, B.A., MacDonell, S.G.
(Eds.), Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering, EASE 2016, Limerick, Ireland,
June 01-03, 2016. ACM, pp. 26:1–26:6. http://dx.doi.org/10.1145/2915970.
2916008.

arousi, G., Garousi, V., Moussavi, M., Ruhe, G., Smith, B., 2013. Evaluating
usage and quality of technical software documentation: An empirical study.
In: da Silva, F.Q.B., Juzgado, N.J., Travassos, G.H. (Eds.), 17th International
Conference on Evaluation and Assessment in Software Engineering, EASE
’13, Porto de Galinhas, Brazil, April 14-16, 2013. ACM, pp. 24–35. http:
//dx.doi.org/10.1145/2460999.2461003.

arousi, G., Garousi-Yusifoğlu, V., Ruhe, G., Zhi, J., Moussavi, M., Smith, B., 2015.
Usage and usefulness of technical software documentation: An industrial
case study. Inf. Softw. Technol. 57, 664–682.

onzález-Barahona, J.M., Robles, G., 2012. On the reproducibility of empirical
software engineering studies based on data retrieved from development
repositories. Empir. Softw. Eng. 17 (1), 75–89. http://dx.doi.org/10.1007/
s10664-011-9181-9.

aouari, D., Sahraoui, H.A., Langlais, P., 2011. [How good is your comment? a]
study of comments in Java programs. In: Proceedings of the 5th International
Symposium on Empirical Software Engineering and Measurement, ESEM
2011, Banff, AB, Canada, September 22-23, 2011. IEEE Computer Society, pp.
137–146. http://dx.doi.org/10.1109/ESEM.2011.22.

ata, H., Treude, C., Kula, R.G., Ishio, T., 2019. 9.6 Million links in source
code comments: Purpose, evolution, and decay. In: Proceedings of the
41st International Conference on Software Engineering. IEEE Press, pp.
1211–1221.

ammarino, M., Aversano, L., Bernardi, M.L., Cimitile, M., 2020. A topic modeling
approach to evaluate the comments consistency to source code. In: 2020
International Joint Conference on Neural Networks, IJCNN 2020, Glasgow,
United Kingdom, July 19-24, 2020. IEEE, pp. 1–8. http://dx.doi.org/10.1109/
IJCNN48605.2020.9207651.

allis, R., Di Sorbo, A., Canfora, G., Panichella, S., 2021. Predicting issue types on
GitHub. Sci. Comput. Program. 205, 102598.

echagia, M., Fragkoulis, M., Louridas, P., Spinellis, D., 2018. The exception
handling riddle: an empirical study on the android api. J. Syst. Softw. 142,
248–270. http://dx.doi.org/10.1016/j.jss.2018.04.034.

eele, S., 2007. Guidelines for performing systematic literature reviews in
software engineering. Tech. rep. Technical report, EBSE Technical Report
EBSE-2007-01.

ernighan, B.W., Pike, R., 1999. The Practice of Programming (Addison-
Wesley Professional Computing Series), first ed. Addison-Wesley,
URL http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/020161586X.

hamis, N., Witte, R., Rilling, J., 2010. Automatic quality assessment of
source code comments: the JavadocMiner. In: International Conference on
Application of Natural Language to Information Systems. Springer, pp. 68–79.

itchenham, B., Charters, S., 2007. Guidelines for performing systematic
literature reviews in software engineering.

uhrmann, M., Fernández, D.M., Daneva, M., 2017. On the pragmatic design of
literature studies in software engineering: An experience-based guideline.
Empir. Softw. Eng. 22 (6), 2852–2891. http://dx.doi.org/10.1007/s10664-016-
9492-y.
20
Lehman, M., Perry, D., Ramil, J., Turski, W., Wernick, P., 1997. Metrics and laws
of software evolution–the nineties view. In: Proceedings IEEE International
Software Metrics Symposium (METRICS’97). IEEE Computer Society Press, Los
Alamitos CA, pp. 20–32. http://dx.doi.org/10.1109/METRIC.1997.637156.

Lemos, O.A.L., Suzuki, M., de Paula, A.C., Goes, C.L., 2020. Comparing identi-
fiers and comments in engineered and non-engineered code: a large-scale
empirical study. In: Hung, C., Cerný, T., Shin, D., Bechini, A. (Eds.), SAC
’20: The 35th ACM/SIGAPP Symposium on Applied Computing, online event,
[Brno, Czech Republic], March 30 - April 3, 2020. ACM, pp. 100–109. http:
//dx.doi.org/10.1145/3341105.3373972.

Li, H., Li, S., Sun, J., Xing, Z., Peng, X., Liu, M., Zhao, X., 2018. Improving [API]
caveats accessibility by mining API caveats knowledge graph. In: 2018 IEEE
International Conference on Software Maintenance and Evolution, ICSME
2018, Madrid, Spain, September 23-29, 2018. IEEE Computer Society, pp.
183–193. http://dx.doi.org/10.1109/ICSME.2018.00028.

Liu, Z., Chen, H., Chen, X., Luo, X., Zhou, F., 2018. Automatic detection of outdated
comments during code changes. In: Reisman, S., Ahamed, S.I., Demartini, C.,
Conte, T.M., Liu, L., Claycomb, W.R., Nakamura, M., Tovar, E., Cimato, S.,
Lung, C., Takakura, H., Yang, J., Akiyama, T., Zhang, Z., Hasan, K. (Eds.),
2018 IEEE 42nd Annual Computer Software and Applications Conference,
COMPSAC 2018, Tokyo, Japan, 23-27 2018, Volume 1. IEEE Computer Society,
pp. 154–163. http://dx.doi.org/10.1109/COMPSAC.2018.00028.

Lucia, A.D., Penta, M.D., Oliveto, R., 2011. Improving source code lexicon
via traceability and information retrieval. IEEE Trans. Softw. Eng. 37 (2),
205–227. http://dx.doi.org/10.1109/TSE.2010.89.

Maalej, W., Tiarks, R., Roehm, T., Koschke, R., 2014. On the compre-
hension of program comprehension. ACM TOSEM 23 (4), 31:1–31:37.
http://dx.doi.org/10.1145/2622669, http://mobis.informatik.uni-hamburg.de/
wp-content/uploads/2014/06/TOSEM-Maalej-Comprehension-PrePrint2.pdf.

Malik, R.S., Patra, J., Pradel, M., 2019. Nl2type: inferring javascript function types
from natural language information. In: Atlee, J.M., Bultan, T., Whittle, J. (Eds.),
Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019. IEEE / ACM, pp. 304–315. http://dx.doi.org/10.1109/ICSE.2019.
00045.

McBurney, P.W., McMillan, C., 2016. An empirical study of the textual similarity
between source code and source code summaries. Empir. Softw. Eng. 21 (1),
17–42. http://dx.doi.org/10.1007/s10664-014-9344-6.

McBurney, P.W., McMillan, C., 2016a. Automatic source code summarization of
context for Java methods. IEEE Trans. Softw. Eng. 42 (2), 103–119. http:
//dx.doi.org/10.1109/TSE.2015.2465386.

McMillan, C., Poshyvanyk, D., Grechanik, M., 2010. Recommending source code
examples via API call usages and documentation. In: Proceedings of the
2nd International Workshop on Recommendation Systems for Software
Engineering, pp. 21–25.

Meneely, A., Smith, B.H., Williams, L.A., 2012. Validating software metrics:
A spectrum of philosophies. ACM Trans. Softw. Eng. Methodol. 21 (4),
24:1–24:28. http://dx.doi.org/10.1145/2377656.2377661.

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., Gao, J.,
2021. Deep learning–based text classification: A comprehensive review. ACM
Comput. Surv. 54 (3), 1–40.

Monperrus, M., Eichberg, M., Tekes, E., Mezini, M., 2012. What should developers
be aware of? An empirical study on the directives of API documentation.
Empir. Softw. Eng. 17 (6), 703–737. http://dx.doi.org/10.1007/s10664-011-
9186-4.

Motwani, M., Brun, Y., 2019. Automatically generating precise oracles from
structured natural language specifications. In: Atlee, J.M., Bultan, T., Whit-
tle, J. (Eds.), Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019. IEEE / ACM, pp. 188–199. http://dx.doi.org/10.1109/
ICSE.2019.00035.

Nazar, N., Hu, Y., Jiang, H., 2016. Summarizing software artifacts: A literature
review. J. Comput. Sci. Tech. 31 (5), 883–909.

Nie, P., Rai, R., Li, J.J., Khurshid, S., Mooney, R.J., Gligoric, M., 2019. A frame-
work for writing trigger-action todo comments in executable format. In:
Dumas, M., Pfahl, D., Apel, S., Russo, A. (Eds.), Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn,
Estonia, August 26-30, 2019. ACM, pp. 385–396. http://dx.doi.org/10.1145/
3338906.3338965.

Nurvitadhi, E., Leung, W.W., Cook, C., 2003. Do class comments aid Java program
understanding? In: 33rd Annual Frontiers in Education, 2003. FIE 2003. 1.
IEEE, T3C–T3C.

Padioleau, Y., Tan, L., Zhou, Y., 2009. Listening to programmers — taxonomies
and characteristics of comments in operating system code. In: Proceedings of
the 31st International Conference on Software Engineering. IEEE Computer
Society, pp. 331–341.

Pandita, R., Xiao, X., Zhong, H., Xie, T., Oney, S., Paradkar, A.M., 2012. Inferring
method specifications from natural language API descriptions. In: Glinz, M.,
Murphy, G.C., Pezzè, M. (Eds.), 34th International Conference on Software
Engineering, ICSE 2012, June (2012) 2-9. IEEE Computer Society, Zurich,
Switzerland, pp. 815–825. http://dx.doi.org/10.1109/ICSE.2012.6227137.

http://refhub.elsevier.com/S0164-1212(22)00191-1/sb18
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb18
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb18
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb18
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb18
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb19
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb19
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb19
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb19
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb19
http://dx.doi.org/10.1145/3196321.3196347
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb21
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb21
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb21
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb22
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb22
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb22
http://dx.doi.org/10.1145/585058.585065
http://dx.doi.org/10.1145/2915970.2916008
http://dx.doi.org/10.1145/2915970.2916008
http://dx.doi.org/10.1145/2915970.2916008
http://dx.doi.org/10.1145/2460999.2461003
http://dx.doi.org/10.1145/2460999.2461003
http://dx.doi.org/10.1145/2460999.2461003
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb27
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb27
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb27
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb27
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb27
http://dx.doi.org/10.1007/s10664-011-9181-9
http://dx.doi.org/10.1007/s10664-011-9181-9
http://dx.doi.org/10.1007/s10664-011-9181-9
http://dx.doi.org/10.1109/ESEM.2011.22
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb30
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb30
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb30
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb30
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb30
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb30
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb30
http://dx.doi.org/10.1109/IJCNN48605.2020.9207651
http://dx.doi.org/10.1109/IJCNN48605.2020.9207651
http://dx.doi.org/10.1109/IJCNN48605.2020.9207651
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb32
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb32
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb32
http://dx.doi.org/10.1016/j.jss.2018.04.034
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb34
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb34
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb34
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb34
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb34
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/020161586X
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/020161586X
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/020161586X
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb36
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb36
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb36
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb36
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb36
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb37
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb37
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb37
http://dx.doi.org/10.1007/s10664-016-9492-y
http://dx.doi.org/10.1007/s10664-016-9492-y
http://dx.doi.org/10.1007/s10664-016-9492-y
http://dx.doi.org/10.1109/METRIC.1997.637156
http://dx.doi.org/10.1145/3341105.3373972
http://dx.doi.org/10.1145/3341105.3373972
http://dx.doi.org/10.1145/3341105.3373972
http://dx.doi.org/10.1109/ICSME.2018.00028
http://dx.doi.org/10.1109/COMPSAC.2018.00028
http://dx.doi.org/10.1109/TSE.2010.89
http://dx.doi.org/10.1145/2622669
http://mobis.informatik.uni-hamburg.de/wp-content/uploads/2014/06/TOSEM-Maalej-Comprehension-PrePrint2.pdf
http://mobis.informatik.uni-hamburg.de/wp-content/uploads/2014/06/TOSEM-Maalej-Comprehension-PrePrint2.pdf
http://mobis.informatik.uni-hamburg.de/wp-content/uploads/2014/06/TOSEM-Maalej-Comprehension-PrePrint2.pdf
http://dx.doi.org/10.1109/ICSE.2019.00045
http://dx.doi.org/10.1109/ICSE.2019.00045
http://dx.doi.org/10.1109/ICSE.2019.00045
http://dx.doi.org/10.1007/s10664-014-9344-6
http://dx.doi.org/10.1109/TSE.2015.2465386
http://dx.doi.org/10.1109/TSE.2015.2465386
http://dx.doi.org/10.1109/TSE.2015.2465386
http://dx.doi.org/10.1145/2377656.2377661
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb50
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb50
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb50
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb50
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb50
http://dx.doi.org/10.1007/s10664-011-9186-4
http://dx.doi.org/10.1007/s10664-011-9186-4
http://dx.doi.org/10.1007/s10664-011-9186-4
http://dx.doi.org/10.1109/ICSE.2019.00035
http://dx.doi.org/10.1109/ICSE.2019.00035
http://dx.doi.org/10.1109/ICSE.2019.00035
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb53
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb53
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb53
http://dx.doi.org/10.1145/3338906.3338965
http://dx.doi.org/10.1145/3338906.3338965
http://dx.doi.org/10.1145/3338906.3338965
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb55
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb55
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb55
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb55
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb55
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb56
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb56
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb56
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb56
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb56
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb56
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb56
http://dx.doi.org/10.1109/ICSE.2012.6227137


P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

P

P

P

P

P

P

P

R

R

R

R

R

R

R

S

S

S

S

S

S

S

ascarella, L., Bacchelli, A., 2017. Classifying code comments in Java open-source
software systems. In: Proceedings of the 14th International Conference on
Mining Software Repositories, MSR ’17. IEEE Press, pp. 227–237. http://dx.
doi.org/10.1109/MSR.2017.63.

ascarella, L., Bruntink, M., Bacchelli, A., 2019. Classifying code comments in Java
software systems. Empir. Softw. Eng. 24 (3), 1499–1537. http://dx.doi.org/10.
1007/s10664-019-09694-w.

ascarella, L., Ram, A., Nadeem, A., Bisesser, D., Knyazev, N., Bacchelli, A.,
2018. Investigating type declaration mismatches in Python. In: Fontana, F.A.,
Walter, B., Ampatzoglou, A., Palomba, F. (Eds.), 2018 IEEE Workshop on
Machine Learning Techniques for Software Quality Evaluation, MaLTeSQuE,
SANER 2018, Campobasso, Italy, March 20, 2018. IEEE Computer Society, pp.
43–48. http://dx.doi.org/10.1109/MALTESQUE.2018.8368458.

etersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic mapping stud-
ies in software engineering. In: 12th International Conference on Evaluation
and Assessment in Software Engineering (EASE) 12, pp. 1–10.

etticrew, M., Roberts, H., 2008. Systematic Reviews in the Social Sciences: A
Practical Guide. John Wiley & Sons.

ham, T.M.T., Yang, J., 2020. The secret life of commented-out source code. In:
ICPC ’20: 28th International Conference on Program Comprehension, Seoul,
Republic of Korea, July 13-15, 2020. ACM, pp. 308–318. http://dx.doi.org/10.
1145/3387904.3389259.

lösch, R., Dautovic, A., Saft, M., 2014. The value of software documentation
quality. In: 2014 14th International Conference on Quality Software, Allen,
TX, USA, October 2-3, 2014. IEEE, pp. 333–342. http://dx.doi.org/10.1109/
QSIC.2014.22.

ahman, M.M., Roy, C.K., Keivanloo, I., 2015. Recommending insightful comments
for source code using crowdsourced knowledge. In: Godfrey, M.W., Lo, D.,
Khomh, F. (Eds.), 15th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2015, Bremen, Germany, September 27-
28, 2015. IEEE Computer Society, pp. 81–90. http://dx.doi.org/10.1109/SCAM.
2015.7335404.

ama, G.M., Kak, A.C., 2015. Some structural measures of API usability. Softw.
Pract. Exp. 45 (1), 75–110. http://dx.doi.org/10.1002/spe.2215.

ani, P., Panichella, S., Leuenberger, M., Di Sorbo, A., Nierstrasz, O., 2021a. How to
identify class comment types? A multi-language approach for class comment
classification. J. Syst. Softw. 181, 111047. http://dx.doi.org/10.1016/j.jss.2021.
111047, arXiv:2107.04521, http://scg.unibe.ch/archive/papers/Rani21d.pdf.

ani, P., Panichella, S., Leuenberger, M., Ghafari, M., Nierstrasz, O., 2021b. What
do class comments tell us? An investigation of comment evolution and
practices in Pharo Smalltalk. Empir. Softw. Eng. 26 (6), 1–49. http://dx.
doi.org/10.1007/s10664-021-09981-5, arXiv:2005.11583, http://scg.unibe.ch/
archive/papers/Rani21b.pdf.

atol, I.K., Robillard, M.P., 2017. Detecting fragile comments. In: Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press, pp. 112–122.

obillard, M.P., 2009. [What makes APIs] hard to learn? answers from de-
velopers. IEEE Softw. 26 (6), 27–34. http://dx.doi.org/10.1109/MS.2009.
193.

obillard, M.P., Chhetri, Y.B., 2015. [Recommending reference API] documenta-
tion. Empir. Softw. Eng. 20 (6), 1558–1586. http://dx.doi.org/10.1007/s10664-
014-9323-y.

calabrino, S., Bavota, G., Vendome, C., Vásquez, M.L., Poshyvanyk, D., Oliveto, R.,
2017. Automatically assessing code understandability: how far are we?. In:
Rosu, G., Penta, M.D., Nguyen, T.N. (Eds.), Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017,
Urbana, IL, USA, October 30 - November 03, 2017. IEEE Computer Society,
pp. 417–427. http://dx.doi.org/10.1109/ASE.2017.8115654.

calabrino, S., Linares-Vásquez, M., Oliveto, R., Poshyvanyk, D., 2018. A com-
prehensive model for code readability. J. Softw.: Evol. Process 30 (6),
e1958.

calabrino, S., Linares-Vasquez, M., Poshyvanyk, D., Oliveto, R., 2016. Improv-
ing code readability models with textual features. In: 2016 IEEE 24th
International Conference on Program Comprehension. ICPC, IEEE, pp. 1–10.

hinyama, Y., Arahori, Y., Gondow, K., 2018. Analyzing code comments to boost
program comprehension. In: 2018 25th Asia-Pacific Software Engineering
Conference. APSEC, IEEE, pp. 325–334.

ilva, A., Araújo, T., Nunes, J., Perkusich, M., Dilorenzo, E., de Almeida, H.O.,
Perkusich, A., 2017. A systematic review on the use of definition of done on
agile software development projects. In: Mendes, E., Counsell, S., Petersen, K.
(Eds.), Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering, EASE 2017, Karlskrona, Sweden, June
15-16, 2017. ACM, pp. 364–373. http://dx.doi.org/10.1145/3084226.3084262.

ohan, S., Maurer, F., Anslow, C., Robillard, M.P., 2017. A study of the ef-
fectiveness of usage examples in REST API documentation. In: 2017 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, pp. 53–61.

ong, X., Sun, H., Wang, X., Yan, J., 2019. A survey of automatic generation
of source code comments: Algorithms and techniques. IEEE Access 7,
111411–111428.
21
Stapleton, S., Gambhir, Y., LeClair, A., Eberhart, Z., Weimer, W., Leach, K.,
Huang, Y., 2020. A human study of comprehension and code summarization.
In: ICPC ’20: 28th International Conference on Program Comprehension,
Seoul, Republic of Korea, July 13-15, 2020. ACM, pp. 2–13. http://dx.doi.org/
10.1145/3387904.3389258.

Steidl, D., Hummel, B., Juergens, E., 2013. Quality analysis of source code
comments. In: Program Comprehension (ICPC), 2013 IEEE 21st International
Conference on. IEEE, pp. 83–92.

Sun, X., Geng, Q., Lo, D., Duan, Y., Liu, X., Li, B., 2016. Code comment quality
analysis and improvement recommendation: an automated approach. Int. J.
Softw. Eng. Knowl. Eng. 26 (06), 981–1000.

Tan, L., Yuan, D., Krishna, G., Zhou, Y., 2007. /* iComment: Bugs or bad
comments?*/. In: Proceedings of Twenty-First ACM SIGOPS Symposium on
Operating Systems Principles, pp. 145–158.

Tarhan, A., Giray, G., 2017. On the use of ontologies in software process assess-
ment: A systematic literature review. In: Mendes, E., Counsell, S., Petersen, K.
(Eds.), Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering, EASE 2017, Karlskrona, Sweden, June
15-16, 2017. ACM, pp. 2–11. http://dx.doi.org/10.1145/3084226.3084261.

Tomassetti, F., Torchiano, M., 2014. An empirical assessment of polyglot-ism in
GitHub. In: Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering, pp. 1–4.

Törngren, M., Sellgren, U., 2018. Complexity Challenges in Development of Cyber-
Physical Systems. Springer International Publishing, Cham, pp. 478–503.
http://dx.doi.org/10.1007/978-3-319-95246-8_27.

Vincenti, W.G., et al., 1990. What Engineers Know and how They Know It, 141.
Johns Hopkins University Press, Baltimore.

Visconti, M., Cook, C.R., 2004. Assessing the state of software documentation
practices. In: International Conference on Product Focused Software Process
Improvement. Springer, pp. 485–496.

Wang, C., Peng, X., Liu, M., Xing, Z., Bai, X., Xie, B., Wang, T., 2019. A learning-
based approach for automatic construction of domain glossary from source
code and documentation. In: Dumas, M., Pfahl, D., Apel, S., Russo, A. (Eds.),
Proceedings of the ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019. ACM, pp.
97–108. http://dx.doi.org/10.1145/3338906.3338963.

Wen, F., Nagy, C., Bavota, G., Lanza, M., 2019. A large-scale empirical study
on code-comment inconsistencies. In: Proceedings of the 27th International
Conference on Program Comprehension. IEEE Press, pp. 53–64.

Wieringa, R., Maiden, N., Mead, N., Rolland, C., 2006. Requirements engineering
paper classification and evaluation criteria: a proposal and a discussion.
Requir. Eng. 11 (1), 102–107.

Wu, Y., Manabe, Y., Kanda, T., Germán, D.M., Inoue, K., 2017. Analysis of license
inconsistency in large collections of open source projects. Empir. Softw. Eng.
22 (3), 1194–1222. http://dx.doi.org/10.1007/s10664-016-9487-8.

Xi, Y., Shen, L., Gui, Y., Zhao, W., 2019. Migrating deprecated API to documented
replacement: Patterns and tool. In: Proceedings of the 11th Asia-Pacific
Symposium on Internetware, pp. 1–10.

Xia, X., Bao, L., Lo, D., Xing, Z., Hassan, A.E., Li, S., 2018. Measuring program
comprehension: a large-scale field study with professionals. IEEE Trans.
Softw. Eng. 44 (10), 951–976. http://dx.doi.org/10.1109/TSE.2017.2734091.

Yu, H., Li, B., Wang, P., Jia, D., Wang, Y., 2016. Source code comments quality
assessment method based on aggregation of classification algorithms. J.
Comput. Appl. 36 (12), 3448–3453.

Zelkowitz, M.V., Wallace, D., 1997. Experimental validation in software
engineering. Inf. Softw. Technol. 39 (11), 735–743.

Zhai, J., Xu, X., Shi, Y., Tao, G., Pan, M., Ma, S., Xu, L., Zhang, W., Tan, L.,
Zhang, X., 2020. [CPC:] automatically classifying and propagating natural
language comments via program analysis. In: Rothermel, G., Bae, D. (Eds.),
ICSE ’20: 42nd International Conference on Software Engineering, Seoul,
South Korea, 27 June - 19 July, 2020. ACM, pp. 1359–1371. http://dx.doi.
org/10.1145/3377811.3380427.

Zhang, J., Xu, L., Li, Y., 2018. Classifying python code comments based on
supervised learning. In: Meng, X., Li, R., Wang, K., Niu, B., Wang, X., Zhao, G.
(Eds.), Web Information Systems and Applications - 15th International
Conference, WISA 2018, Taiyuan, China, September 14-15, 2018, Proceedings.
In: 11242 of Lecture Notes in Computer Science, Springer, pp. 39–47. http:
//dx.doi.org/10.1007/978-3-030-02934-0_4.

Zhi, J., Garousi-Yusifoğlu, V., Sun, B., Garousi, G., Shahnewaz, S., Ruhe, G.,
2015. Cost, benefits and quality of software development documentation:
A systematic mapping. J. Syst. Softw. 99, 175–198.

Zhong, H., Su, Z., 2013. [Detecting API] documentation errors. In: Hosking, A.L.,
Eugster, P.T., Lopes, C.V. (Eds.), Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA 2013, Part of SPLASH 2013, Indianapolis, in,
USA, October 26-31, 2013. pp. 803–816. http://dx.doi.org/10.1145/2509136.
2509523.

http://dx.doi.org/10.1109/MSR.2017.63
http://dx.doi.org/10.1109/MSR.2017.63
http://dx.doi.org/10.1109/MSR.2017.63
http://dx.doi.org/10.1007/s10664-019-09694-w
http://dx.doi.org/10.1007/s10664-019-09694-w
http://dx.doi.org/10.1007/s10664-019-09694-w
http://dx.doi.org/10.1109/MALTESQUE.2018.8368458
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb62
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb62
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb62
http://dx.doi.org/10.1145/3387904.3389259
http://dx.doi.org/10.1145/3387904.3389259
http://dx.doi.org/10.1145/3387904.3389259
http://dx.doi.org/10.1109/QSIC.2014.22
http://dx.doi.org/10.1109/QSIC.2014.22
http://dx.doi.org/10.1109/QSIC.2014.22
http://dx.doi.org/10.1109/SCAM.2015.7335404
http://dx.doi.org/10.1109/SCAM.2015.7335404
http://dx.doi.org/10.1109/SCAM.2015.7335404
http://dx.doi.org/10.1002/spe.2215
http://dx.doi.org/10.1016/j.jss.2021.111047
http://dx.doi.org/10.1016/j.jss.2021.111047
http://dx.doi.org/10.1016/j.jss.2021.111047
http://arxiv.org/abs/2107.04521
http://scg.unibe.ch/archive/papers/Rani21d.pdf
http://dx.doi.org/10.1007/s10664-021-09981-5
http://dx.doi.org/10.1007/s10664-021-09981-5
http://dx.doi.org/10.1007/s10664-021-09981-5
http://arxiv.org/abs/2005.11583
http://scg.unibe.ch/archive/papers/Rani21b.pdf
http://scg.unibe.ch/archive/papers/Rani21b.pdf
http://scg.unibe.ch/archive/papers/Rani21b.pdf
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb69
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb69
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb69
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb69
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb69
http://dx.doi.org/10.1109/MS.2009.193
http://dx.doi.org/10.1109/MS.2009.193
http://dx.doi.org/10.1109/MS.2009.193
http://dx.doi.org/10.1007/s10664-014-9323-y
http://dx.doi.org/10.1007/s10664-014-9323-y
http://dx.doi.org/10.1007/s10664-014-9323-y
http://dx.doi.org/10.1109/ASE.2017.8115654
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb73
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb73
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb73
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb73
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb73
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb74
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb74
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb74
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb74
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb74
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb75
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb75
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb75
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb75
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb75
http://dx.doi.org/10.1145/3084226.3084262
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb77
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb78
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb78
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb78
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb78
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb78
http://dx.doi.org/10.1145/3387904.3389258
http://dx.doi.org/10.1145/3387904.3389258
http://dx.doi.org/10.1145/3387904.3389258
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb80
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb80
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb80
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb80
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb80
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb81
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb81
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb81
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb81
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb81
http://dx.doi.org/10.1145/3084226.3084261
http://dx.doi.org/10.1007/978-3-319-95246-8_27
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb86
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb86
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb86
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb87
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb87
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb87
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb87
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb87
http://dx.doi.org/10.1145/3338906.3338963
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb89
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb89
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb89
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb89
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb89
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb90
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb90
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb90
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb90
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb90
http://dx.doi.org/10.1007/s10664-016-9487-8
http://dx.doi.org/10.1109/TSE.2017.2734091
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb94
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb94
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb94
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb94
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb94
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb95
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb95
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb95
http://dx.doi.org/10.1145/3377811.3380427
http://dx.doi.org/10.1145/3377811.3380427
http://dx.doi.org/10.1145/3377811.3380427
http://dx.doi.org/10.1007/978-3-030-02934-0_4
http://dx.doi.org/10.1007/978-3-030-02934-0_4
http://dx.doi.org/10.1007/978-3-030-02934-0_4
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb98
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb98
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb98
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb98
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb98
http://dx.doi.org/10.1145/2509136.2509523
http://dx.doi.org/10.1145/2509136.2509523
http://dx.doi.org/10.1145/2509136.2509523


P. Rani, A. Blasi, N. Stulova et al. The Journal of Systems & Software 195 (2023) 111515

Z

Z

Z

P
H
a
s
i
B
(

A
(
a
c
q
c
t

N
l
t
a
s
h
t

hou, Y., Gu, R., Chen, T., Huang, Z., Panichella, S., Gall, H., 2017. Analyzing
APIs documentation and code to detect directive defects. In: Proceedings of
the 39th International Conference on Software Engineering. IEEE Press, pp.
27–37.

hou, Y., Wang, C., Yan, X., Chen, T., Panichella, S., Gall, H.C., 2020. Automatic
detection and repair recommendation of directive defects in Java API doc-
umentation. IEEE Trans. Softw. Eng. 46 (9), 1004–1023. http://dx.doi.org/10.
1109/TSE.2018.2872971.

hou, Y., Yan, X., Yang, W., Chen, T., Huang, Z., 2019. [Augmenting Java] method
comments generation with context information based on neural networks.
J. Syst. Softw. 156, 328–340. http://dx.doi.org/10.1016/j.jss.2019.07.087.

ooja Rani is a Postdoctoral researcher at the University of Bern (Switzerland).
er focus areas involve conducting empirical studies, developing methodology,
nd building tools to support developers in understanding code. Specifically,
he studies code comments from various software systems and builds tools to
mprove the quality of comments. She finished her Ph.D. at the University of
ern in 2022 and masters at the Birla Institute of Technology and Science-Pilani
India) in 2017.

rianna Blasi is a Ph.D. candidate at the Università della Svizzera italiana
Switzerland). Her research focuses on software testing. Her work is about
utomatically deriving test oracles from natural-language artifacts, such as code
omments. She authored papers both about test oracles and code comments
uality and served as a reviewer for journals and conferences in the SE
ommunity. Interested both in research and industry, she interned at Facebook
o work on real-world software testing problems.

ataliia Stulova is a Postdoctoral researcher at the University of Bern (Switzer-
and). Her research focuses on software documentation tools and techniques
o keep software and its specifications aligned. Papers she (co-)authored have
ppeared in various international conferences and journals in the areas of
oftware engineering, requirements engineering, and software verification. She
as served as a reviewer for several international journals and conferences in
he fields of software engineering and logic programming.
22
Sebastiano Panichella is a Computer Science Researcher at Zurich University
of Applied Science (ZHAW). His main research goal is to conduct industrial
research, involving both industrial and academic collaborations, to sustain the In-
ternet of Things (IoT) vision, where future smart cities. Currently he is technical
coordinator of H2020 and Innosuisse projects concerning DevOps for Complex
Cyber-physical Systems. He authored (or co-authored) around seventhly papers
appeared in International Conferences and Journals. He serves and has served as
program committee member of various international conference and as reviewer
for various international journals in the fields of software engineering. He was
selected (results reported by the JSS journal) in 2019 as one of the top-20
(second in Switzerland) Most Active Early Stage Researchers Worldwide in SE,
while in 2021 as one of the top-20 Most impactful SE researchers Worldwide.

Alessandra Gorla is an assistant professor at the IMDEA Software Institute,
Spain. She completed her Ph.D. in informatics at the Università’ della Svizzera
Italiana in Lugano, Switzerland in 2011. In her Ph.D. thesis she defined and
developed the notion of Automatic Workarounds, a self-healing technique to
recover Web applications from field failures, a work for which she received
the Fritz Kutter Award for the best industry related Ph.D. thesis in computer
science in Switzerland. Before joining the IMDEA Software Institute, she was a
postdoctoral researcher in the software engineering group at Saarland University
in Germany. During her postdoc, she has also been a visiting researcher at Google
in Mountain View. Alessandra is one of the recipients of the 2019 Facebook
Testing and Verification research award. In 2020 she received the Emilio Aced
award in privacy protection, given by the Agencia Española Protección de Datos
for her research on Android applications, and she received the Ramon y Cajal
fellowship in 2021, which is the top national grant for researchers in Spain.

Oscar Nierstrasz is Professor of Computer Science at the Institute of Computer
Science (INF) in the Faculty of Science of the University of Bern, where he
founded the Software Composition Group in 1994. He is co-author of over
300 publications and co-author of the open-source books Object-Oriented
Reengineering Patterns and Pharo by Example.

http://refhub.elsevier.com/S0164-1212(22)00191-1/sb100
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb100
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb100
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb100
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb100
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb100
http://refhub.elsevier.com/S0164-1212(22)00191-1/sb100
http://dx.doi.org/10.1109/TSE.2018.2872971
http://dx.doi.org/10.1109/TSE.2018.2872971
http://dx.doi.org/10.1109/TSE.2018.2872971
http://dx.doi.org/10.1016/j.jss.2019.07.087

	A decade of code comment quality assessment: A systematic literature review
	Introduction
	Study Design
	Research questions
	Search Strategy
	Search Keywords
	Timeline
	Data collection
	Data Retrieval
	Data selection
	Data Evaluation

	Data extraction for research questions

	Results
	RQ1: What types of comments do researchers focus on when assessing comment quality?
	RQ2: Which QAs are used to assess code comments?
	RQ3: Which tools and techniques do researchers use to assess comment QAs?
	RQ4: What kinds of contribution do studies often make?
	RQ5: How do researchers evaluate their comment quality assessment studies?

	Discussion
	Implication for Future studies
	Threats to validity
	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References


