
Noname manuscript No.
(will be inserted by the editor)

What do class comments tell us? An investigation of comment
evolution and practices in Pharo Smalltalk

Pooja Rani · Sebastiano Panichella · Manuel
Leuenberger · Mohammad Ghafari · Oscar
Nierstrasz

Received: date / Accepted: date

Abstract Previous studies have characterized code comments in various programming lan-
guages, and have shown how a high quality of code comments is crucial to support program
comprehension activities and to improve the effectiveness of maintenance tasks. However,
very few studies have focused on the analysis of the information embedded in code com-
ments. None of them has compared developer practices to write comments following the
standard guidelines or analyzed these characteristics in the Pharo Smalltalk environment.

These class commenting practices have their origins in Smalltalk-80, going back 40
years. Smalltalk traditionally separates class comments from source code, and offers a brief
template for entering a comment for newly-created classes. These templates have evolved
over the years, particularly in the Pharo environment. This paper reports the first empirical
study investigating commenting practices in Pharo Smalltalk. As a first step, we analyze
class comment evolution over seven Pharo versions. Then, we quantitatively and qualita-
tively analyze class comments of the most recent version of Pharo, to investigate the infor-
mation types of Pharo comments. Finally, we study the adherence of developer commenting
practices to the class template over Pharo versions.

The results of this study show that there is a rapid increase in class comments in the ini-
tial three Pharo versions, while in subsequent versions developers added comments to both
new and old classes, thus maintaining a similar ratio. In addition, the analysis of the seman-
tics of the comments from the latest Pharo version suggests that 23 information types are
typically embedded in class comments by developers and that only seven of them are present
in the latest Pharo class comment template. However, the information types proposed by the
standard template tend to be present more often than other types of information. Addition-
ally, we find that a substantial proportion of comments follow the writing style of the tem-
plate in writing these information types, but they are written and formatted in a non-uniform
way. This suggests the need to standardize the commenting guidelines for formatting the

Pooja Rani, Manuel Leuenberger, Mohammad Ghafari, Oscar Nierstrasz
Software Composition Group, University of Bern, 3012 Bern, Switzerland
http://scg.unibe.ch/staff

Sebastiano Panichella
Zurich University of Applied Science
E-mail: panc@zhaw.ch

http://scg.unibe.ch/staff/

2 Pooja Rani et al.

text, and providing headers for the different information types to ensure a consistent style,
and to identify the information easily.

Keywords Commenting practices · Class comment analysis · Comment evolution ·
Template analysis · Pharo · Program comprehension

1 Introduction

Software understanding is an integral and required activity across multiple tasks in the soft-
ware development life-cycle, and is critical to any software maintenance task (Siegmund and
Schumann, 2015; Haiduc et al., 2010). To understand a software system, developers usually
refer to both the software documentation and the code itself (Bavota et al., 2013), with code
comments representing one of the most-used forms of documentation artifact for code com-
prehension (de Souza et al., 2005). A study by Maalej et al. (Maalej et al., 2014) shows that
developers trust source code and code comments more than other forms of documentation
for sharing program knowledge, and they consult comments when they try to answer their
questions.

Given the relevance of code comments for program comprehension and maintenance
activities (Woodfield et al., 1981; Tenny, 1985, 1988; Hartzman and Austin, 1993; de Souza
et al., 2006; Lidwell et al., 2010; Cornelissen et al., 2009), researchers have (Hayes and
Zhao, 2005; Scalabrino et al., 2016) (Haiduc et al., 2010; Nielebock et al., 2019) (Tan
et al., 2007b) (Tan, 2015) analyzed comments to detect low-quality comments (Steidl et al.,
2013; Liu et al., 2015), identify existing inconsistency between comments and their related
code elements (Ratol and Robillard, 2017; Wen et al., 2019; Stylos et al., 2009; Petrosyan
et al., 2015; Zhou et al., 2017), and they have examined the co-evolution of comments and
code (Jiang and Hassan, 2006; Fluri et al., 2007, 2009; Ibrahim et al., 2012). (Steidl et al.,
2013) (Liu et al., 2015; Haouari et al., 2011), However, very few studies have focused on
analyzing the information embedded in the source code comments (Padioleau et al., 2009;
Haouari et al., 2011; Steidl et al., 2013; Pascarella and Bacchelli, 2017; Zhang et al., 2018),
and none of them specifically analyzed class comments, and to what extent these class com-
menting practices adhere to the coding style guidelines.

Class comments in object-oriented programming play an important role in obtaining
a high-level overview of classes (Cline, 2015) and are helpful for understanding complex
programs (Nurvitadhi et al., 2003). However, different programming language provide dif-
ferent notations and guidelines for writing comments in their code (Farooq et al., 2015) and
embed different kinds of information into the comments (Ying et al., 2005; Padioleau et al.,
2009; Pascarella and Bacchelli, 2017; Zhang et al., 2018). For instance in Java (a statically-
typed language), a class comment provides an overview of high-level design of a class e.g.,
the purpose of the class, what the class does, and other classes it interacts with (Nurvitadhi
et al., 2003). On the other hand, in Pharo Smalltalk (a dynamically-typed live language
and environment), a class comment contains high-level design information as well as low-
level implementation details, e.g., the application programming interfaces (APIs) the class
provides, the instance variables it has, and its key implementation features. To write these
class comments in an informative and consistent manner, different programming languages
provide various coding style guidelines, such as the Oracle style guideline, PEP257. How-
ever, to what extent Pharo class commenting practices vary from other systems and to what

What do class comments tell us in Pharo Smalltalk? 3

extent developers follow its style guidelines in their comments is not known.1 (Goldberg
and Robson, 1983). .

In this paper, we conjecture that code comments practices (e.g.,, comment content and
style) in different programming languages tend to evolve over time, as result of the natu-
ral program language development and ecosystem evolution. Thus, the goal of our work is
to shed some light on this conjecture, observing the way developers adapt to commenting
practices over time, focusing on Pharo, a modern Smalltalk environment. As follow, we
discuss the key characteristics that make Pharo ideal for our investigation of class comment-
ing practices in object-oriented programming langauges.

– Class comments are a primary source of documentation in Pharo.
– As a descendant of Smalltalk-80, Pharo has a long history of class comments being

separated from the source code (Goldberg and Robson, 1983), and is thus appropriate to
analyze the evolution aspect of the class comments.

– Smalltalk supports liveness since more than three decades; therefore, it can present in-
teresting insights on code documentation in live programming environments.

– Class comments in Pharo neither use any annotations nor the same writing style as
used in Javadocs or Pydocs, thus presenting a rather different aspect on commenting
practices and challenges for existing information identification approaches (Pascarella
and Bacchelli, 2017; Zhang et al., 2018).

– Pharo traditionally offers a brief template (as commenting guidelines for class com-
ments) to enter a class comment for newly-created classes, and this template has evolved
over the years. Consequently, Pharo is appropriate as a case study to investigate to what
extent developers follow the template in writing comments, and what extra information
developers embed in them.

More details regarding the Pharo environment are discussed in section 2.
Research Questions. To better understand class commenting practices in Pharo, we

formulate the following research questions:

– RQ1: What is the class commenting trend of developers over the Pharo versions, and in
particular, do developers change comments of old classes?

– RQ2: What types of information are present in Pharo class comments?
– RQ3: To what extent do developer commenting practices adhere to the class comment

template over Pharo versions?

In this paper, we first study the class commenting practice trends of major Pharo re-
leases over 11 years from 2008 to 2019, assessing whether developers do or do not change
comments of old classes. In addition, we quantitatively and qualitatively analyze the class
comments of the latest version of Pharo to characterise the various types of information em-
bedded in class comments, and we build a comment taxonomy, called Pharo-CTM (Pharo
Comment Type Model). Finally, we evaluate how comments adhere to the template in terms
of content and writing style. For the content aspect, we observe how many information types
in Pharo-CTM match the information types constituting the standard Pharo comment tem-
plate (i.e., a guideline template to write a class comment), and how many are not part of it.
For the writing style aspect, we compare the writing style of comments to the writing style
guidelines suggested by the template.

Our work shows that the trend of writing class comments increased rapidly in the initial
three Pharo versions and then was maintained over subsequent versions, and that developers

1 https://insights.stackoverflow.com/survey/2017/ verified on 4 Feb 2020

https://insights.stackoverflow.com/survey/2017/

4 Pooja Rani et al.

tend to add comments to old classes in Pharo with or without code changes. We observe
that the current comment template substantially diverges from contemporary practices of
developers, with 23 information types occurring in class comments by developers, while
only seven of them are present in the Pharo class comment template. Measuring the fre-
quency of different information types, we find that the seven information types proposed
by the template are present more often than others. Additionally, while writing these infor-
mation types, developers follow the writing style guidelines from the template, e.g., using
first-person pronouns in describing various information types, mentioning the headers of
different information types. We find this behavior of comments adhering to the template
throughout all Pharo versions. Based on these insights we suggest adding commenting
guidelines to the template to ensure consistent formatting of text, and enable highlighting of
certain details, thus improving the quality of the template.

We argue that this work not only encourages stakeholders to revisit their commenting
guidelines, but it also informs developers to comment on the essential details of a class in
a more structured and complete way, and open the road for research aimed at proposing
tools for ensuring a high quality of code comments. A direct implication of our work is that,
in different programming languages, using the contemporary code comment template or
guidelines are not always ideal when actual practices strongly diverge from it. Thus, future
research effort should be made to (i) develop tools that are able to determine the extent
to which the code comment template or guidelines are diverging from actual practice, (ii)
establish language-independent approaches to automatically identify the information type
from the comments, given the increasing usage of multi-programming languages in open
source projects, and (iii) automatically assess code comment quality in terms of both content
and style.

In summary, this paper makes the following contributions:

1. an overview of the Pharo commenting trends over all seven major releases till 2019,
2. an empirically validated taxonomy, called Pharo-CTM, characterizing the information

types embedded in class comments written by developers,
3. a discussion of taxonomies available from the related work, and a mapping and discus-

sion of these taxonomies compare to our taxonomy,
4. an assessment of the extent to which developer commenting practices adhere to the

standard Pharo template, and
5. a publicly available dataset of manually dissected and categorized Pharo comments, in-

cluding all versions of the data used for trend analysis in the replication package (RPack-
age, verified on 20 Nov 2019).

Paper structure. The rest of the paper is organized as follows. In section 3 we analyze
the trends in commenting activities for both old and new classes over the seven major Pharo
releases (RQ1). In section 4 we report on our study of Pharo commenting practices, in
particular the types of information developers include in class comments (RQ2). In section 5
we compare the commenting practices of developers to the standard template, focusing on
the types of information developers include in class comments, and the writing style they
follow (RQ3). We highlight the possible threats to validity of our study in section 6. Then
section 7 summarizes the related work, in relation to the formulated research questions.
Finally, section 8 concludes our study, outlining future directions.

What do class comments tell us in Pharo Smalltalk? 5

2 Background

The Pharo environment. Pharo is a reflective programming language environment incorpo-
rating a Smalltalk dialect. Smalltalk is one of the oldest object-oriented, dynamically-typed
programming languages, still used in various systems (Pharo, Squeak), and scored second
place for most loved programming language in the Stack Overflow survey of 2017.2 Pharo
is a fully open-source and live development environment with a large library integrating ex-
ternal packages. The Pharo ecosystem has a significant number of projects used in research
and industry (Pharo, verified on 10 Jan 2020), and code comments are a primary source of
documentation in Pharo. We computed the ratio of comment sentences to lines of code in the
most recent Pharo release (i.e., Pharo 7) and found that 15% of the total lines are comments.

Fig. 1: A class comment in Pharo

According to our initial investigation on Pharo code comments (we referred as pilot
study later in the paper), a class comment in Pharo represents the main source of docu-
mentation for developers, as it provides detailed information about a class. For instance, the
class comment example of the class MorphicAlarm in Figure 1 shows the intent of the class
mentioned in the first line (“I represent a message to be scheduled by the WorldStat”), a
code example to instantiate the class in following two paragraphs, a note with the heading
“* Note *” to explain the corresponding comparison, and the features of the alarm system
in the last paragraph. The class comment appears in a separate pane instead of being woven
into the source code of the class. Within a class comment, complete sentences are used, but
not annotations like @param, @see to mark the type of information, as opposed to class
comments in other languages. However, the commenting patterns and practices in Pharo
have not been studied or analyzed.

To guide developers in writing a class comment, Pharo offers a semi-structured default
template, as shown in the Pharo 7 template in Figure 2. The template encourages developers

2 https://insights.stackoverflow.com/survey/2017/ verified on 4 Feb 2020

https://insights.stackoverflow.com/survey/2017/

6 Pooja Rani et al.

Fig. 2: Class comment template in Pharo 7

to write different types of information like Intent, Responsibilities, Collaborators, and Pub-
lic API to document important properties and implementation details of the class, but it is
still unclear how frequently developers follow the template while writing class comments,
and what extra information they actually add to the comments.

3 RQ1: Comment trend analysis

Classes are commented more frequently than other code entities, such as methods, variables,
and control structures (Fluri et al., 2007). As software evolves, changes to the source code
of classes may invalidate the class comments (Wen et al., 2019). It is therefore important to
understand how and when developers update classes and their comments. This knowledge
may be useful to inform developers when to update class comments to keep them in sync
with the code. Fluri et al. reported that developers barely comment newly added classes
in Java projects (Fluri et al., 2007), but whether developers have same behavior in other
programming languages or not, is unexplored. With this investigation, our main aim is to
understand developer class commenting behavior in Pharo, and how class documentation is
updated over the years. We therefore perform a trend analysis on developer class comment-
ing practices. In the commenting trend of class comments, we specifically look at two main
aspects : whether the number of commented classes increases or decreases over time, and
whether developers change class comments of old classes over time.

3.1 Study Setup

To better understand class commenting practices of Pharo and achieve reliable results, we
analyzed the core libraries of Pharo. We extracted the most recent revision of each major
release of Pharo, from Pharo 1 to Pharo 7 (2008 to 2019), using a software analysis platform

What do class comments tell us in Pharo Smalltalk? 7

named Moose (Ducasse et al., 2005). For each version we used Moose (Moose, verified on
10 Jan 2020) to extract the class comments and meta details of the classes in the standard im-
age, known as the Pharo core.3 This includes classes to work with files, collections, sockets,
streams, exceptions, graphical interfaces, unit tests, etc.

Table 1: Overview of Pharo versions with the release dates and number of classes

Version Release date # Classes # Classes with comments

1.4 Apr, 2012 2 950 1 486
2.0 Mar, 2013 3 248 1 983
3.0 Apr, 2014 4 025 3 264
4.0 Apr, 2015 4 923 3 768
5.0 May, 2016 5 670 4 493
6.1 Jun, 2017 6 484 5 181
7.0 Jan, 2019 7 863 6 324

Table 1 shows the details of each version with version number, release date, the total
number of classes and the total number of classes with comments.

3.2 Methodology

Using this dataset,4 we measured the trend of commenting by calculating the ratio of com-
mented classes to uncommented classes in each version. To investigate whether developers
change comments of old classes, we tracked comment changes in already existing classes
(old classes). For comment changes, we compared each class in a given version to its pre-
vious version to assess added comments, removed comments and changed content. Addi-
tionally, we tracked code changes of a class in comparison to the previous version to get
an overall summary of the historical changes. To compute code changes we extracted the
class definition (instance side and class side), all methods of the class, and source code of
all methods of each class for each version.5

3.3 Result

The result in Figure 3 shows that the trend of commenting classes increases rapidly for
initial Pharo versions, and is then maintained in subsequent versions. Indeed, in the figure,
we can see that the percentage of commented classes, in light and dark blue (for old and new
classes), increased in initial versions, and then remained constant from the fourth version.

Finding 1: The trend of commenting classes increases rapidly over the first three Pharo
versions, from 50% of commented classes in Pharo 1, to 80% commented classes in
Pharo 3 and subsequent versions.

3 For Pharo 1 and Pharo 6, we only extracted Pharo 1.4 and 6.1 because we could not run Pharo 1 and 6
using Moose, due to the backward compatibility issues of Moose.

4 Folder “RP/Dataset-for-Replication/Data/RQ1/Source-files” in the Replication package
5 Folder “RP/Dataset-for-Replication/Data/RQ1/Code-changes” in the Replication package

https://github.com/poojaruhal/CommentAnalysisInPharo/tree/master/Dataset-for-Replication/Data/RQ1/Source-files
https://github.com/poojaruhal/CommentAnalysisInPharo/tree/master/Dataset-for-Replication/Data/RQ1/Code-changes

8 Pooja Rani et al.

0

945

546 658 976 1026 1052

1464

320

215 497 201 277 487

0

1453

2446
3181

3598 4500
4724

1486

530 818
587 895 681

1600

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 (2950) 2 (3248) 3 (4025) 4 (4923) 5 (5670) 6 (6484) 7 (7863)

Pharo versions (Total classes)

New classes with comments

Old classes with comments

New classes without comments

Old classes without comments

Fig. 3: The trend of classes with and without comments in Pharo versions.

Figure 3 also portrays the detailed aspect of classes that have survived from old versions
and classes added in the current version. For instance, in version 3, we can see that the
number of old classes without comments has reduced (height of the light orange bar segment
decreased), and the number of old classes with comments has increased (height of light blue
bar segment increased) implying that several old classes are commented in version 3, in
addition to commenting new classes. In version 7, we can see a major effort being put
into commenting new classes (77% of the new classes were commented) compared to old
classes (12% of old classes were commented). In particular, 89% of the old classes from
Pharo 6 survived to Pharo 7, of which 20% were uncommented classes and only 12% of the
uncommented classes were commented in Pharo 7.

Finding 2: In later versions of Pharo, developers put effort into maintaining the code
comment ratio, commenting new classes, and adding comments to old classes.

In addition, we find that developers change comments of old classes as shown in Fig-
ure 4. Changing a class comment includes adding comments to an uncommented class, re-
moving the comment, and updating the content of the comment. Differentiating this change
behavior in Figure 4 highlights that in versions 2 and 3, developers focused more on adding
comments to old classes compared to updating or removing the comment content. Since ver-
sion 4, the focus of changing comments shifted to updating the content of class comments
compared to adding comments to old classes. For example, in Pharo 7, more class com-
ments are changed compared to comments added to old classes. To find the reason behind
this behavior, we examine the code changes in old classes, and measure the extent to which
developers update comments of old classes when changing their code.

From Figure 5, we find that in Pharo 7, 52% of the old classes are changed either by
changing code, comments, or both, indicating a major refactoring of the old classes. Nearly
44% of old classes are changed without updating their class comment. Specifically, 75%
of these changes were related to adding, removing, or updating methods, but we found no
corresponding changes in the class comments. We expected these changes to affect the class
comments, due to the dedicated section in the class comment template for instance vari-
ables and key messages. In contrast, the changes such as renaming a package or changing a
method category carry a lower tendency to affect the class comment. Only 7.9% of the old

What do class comments tell us in Pharo Smalltalk? 9

0

100

200

300

400

500

600

700

800

2 3 4 5 6 7

C

la
ss

es

Pharo versions

Comments removed of old classes

Comments added to old classes

Comments updated of old classes

Fig. 4: The trend of comment changes in old classes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7
Pharo versions

New classes

Old classes unchanged

Old classes only comment changed

Old classes only code changed

Old classes comment and code changed

Fig. 5: The trend of changing old classes in Pharo versions

class comments are changed together with the code in Pharo 7, as shown by the dark red bar
segment at the bottom of version 7 in Figure 5. We further explored this segment by analyz-
ing a sample set of 15% of the total 327 classes where both comments and code changed.
We find that 50% of the changes in class comments are related to code changes, confirming
the finding from earlier work (Fluri et al., 2009). In our analysis, the most specific types of
code changes that triggered comment changes were the deprecation of a class and the addi-
tion of new methods. The rest of the code changes e.g., updating a method or class definition
changes, triggered comment changes less frequently. In one particular case of code changes
where a method is removed from the class, the method code is added to the class comment
as an example. Whereas in another similar case, the method comment is added to the class
comment as implementation details. The reason for such a behavior can be the intent to keep
the information about the removed method in the system for future tasks even though it is
deleted. The remaining 50% of the comment changes are not related to code changes, even
though 73% of the code changes in these classes are adding new methods, updating methods,

10 Pooja Rani et al.

or removing existing methods which potentially can trigger the comment changes according
to previous work (Fluri et al., 2009). These unrelated comment changes are about clarifying
details of the class by changing the information types, formatting, improving the grammar,
or changing the writing style from third person to first person or vice versa.6 We further
analyzed which information types are frequently changed in comment changes irrespective
of the code changes to find out the importance of specific information types. We found that
most specific information changes in the class comments were about adding and updating
the intent of the class, warnings, usage examples, and implementation details of the class,
thus indicating the importance of these information types. On the other hand, in test classes
(10% of the classes where code and class comments changed) the most specific information
changes were about removing the bug-related details from the class comments in the next
version. Analyzing what factors motivate developers to make such comment changes and at
what stages of the project they change is the subject of future work.

Finding 3: In 50% of the cases, the code and class comments of old classes change
together, with developers updating comments of the classes to keep them synchronized
with the implementation.

Until now we separated the old classes from the new classes, but did not distinguish
between the originating versions of old classes and those that survived from a specific ver-
sion. For example, in Pharo 7, what portion of the classes survived from Pharo 1 or Pharo
2? This information is crucial to gain insight into comment coverage of a particular version
in each version and which class comments developers considered important to refactor in
the current version. Furthermore, it helped us to analyze what happened to the old classes
in the current version. For example, if the system went through a major refactoring, then
which old version’s classes were deleted, re-introduced or modified? We therefore need to
keep track of the history of a class, from Pharo 1 to latest version, to get an overall view of
the evolution of the system. To answer all these questions, we track the origins of old classes
and their survival history to the current version in Figure 6.

In Figure 6, each Pharo version is assigned a unique color. The shading indicates the
distribution of classes with and without comments. The height of a bar segment in one
color represents the classes surviving from a previous version to the new version. The origin
versions for each class are ordered by age with the oldest version at the bottom and the
newest version at the top. Tracking the color of a version allows us to know how long classes
are kept in the system. For example, in Pharo 1 the dark shade of green shows the classes
with comments and a lighter shade of green shows the classes without comments. We find
that until Pharo 6 the classes originating in version 1 still constitute the largest group of all
origins. In Pharo 3, major efforts were devoted to refactoring and re-documenting classes
from older versions, 1 and 2. In Pharo 4, we observe that the ratio of adding comments to the
new classes is less compared to preceding and succeeding versions except Pharo 1. Pharo
7 shows the effort of documenting old classes and new classes, thus achieving maximum
coverage i.e., 80% of classes with comments among past versions.

In addition to showing the overview of a version, we also summarized the major projects
that were added, removed and re-documented in each version in Table 2. We observed that
the documentation of few projects such as Zinc, and Refactoring were actively updated,
but whether it was due to their importance, or discipline of their developers, or both, is
the subject of future work. We summarized the projects by grouping the added, removed

6 File “RP/Results/RQ1/trend-analysis/class-comment-code-changes-analysis.xlsx” in the Replication
package

https://github.com/poojaruhal/CommentAnalysisInPharo/tree/master/Results/RQ1/trend-analysis/class-comment-code-changes-analysis.xlsx

What do class comments tell us in Pharo Smalltalk? 11

Fig. 6: Survival analysis of Pharo versions.

Table 2: Overview of major projects added, removed and re-documented in each version

Version Added Removed Re-documented

1 Ring metamodel Squeak classes Code simulator, Zinc, Refac-
toring, Monticello

2 QA tools, Spec, Fuel, Native
Boost, Nautilius

OmniBrowser, TrueType Zinc, Refactoring, Monticello

3 Versioner, Opal, Athens, De-
bugger

Kernel tests, Zinc, Monticello,
Collection tests

4 GLM, Rubric, TxText, OS-
Window, MetaLink

Slot tests Refactoring, AST, Athens,
Zinc, Delay scheduler

5 Spur VM, UFFI, Renraku,
STON

NativeBoost Rubric, Refactoring, TxText,
Nautilius, Komitter

6 Iceberg, Epicea, Tonel, Ombu Refactoring, AST, UFFI,
Spec, Renraku

7 Bootstrapping, Traits2, Refac-
toring2, Calypso

TxText, Versioner, Nautil-
ius, Kommitter, Traits

UFFI, System tests, Tool, Ker-
nel, STON, System, Iceberg

and recommented classes by their package in each version. To verify our calculated list,
we compare our project list to Pharo change logs.7 From the aforementioned analysis we
collected several observations about Pharo commenting patterns:

– In Pharo 2, a major focus has been put on refactoring and removing classes from the old
version, Pharo 1. The old system browser, OmniBrowser, is replaced with Nautilus.

– In Pharo 3, a major effort is put into commenting old classes, as shown in Figure 4.
– In Pharo 4, developers focus less on commenting old classes but more on adding new

classes. New projects added in the version are shown in Table 2.

7 https://github.com/pharo-project/pharo-changelogs

https://github.com/pharo-project/pharo-changelogs

12 Pooja Rani et al.

– In Pharo 5, the focus seems more on refactoring classes from old versions specifically
Pharo 1, 2 and 3 but not Pharo 4 as shown in Figure 6. The ratio of classes with com-
ments to classes without comments is also higher compared to the previous Pharo 4.

– In Pharo 6, the effort is put on adding new classes and making sure that comments are
also added to new classes. One of the main projects added in this version is for git
support.

– In Pharo 7, we find that a very high number of new classes are added. After investigating
further we found that new versions of Refactoring and Traits, and a new system browser
Calypso are added. Refactoring old projects is the primary focus of this version. A sub-
stantial number of old class comments are updated, in particular, the projects UFFI,
Tool, and System tests.

– Analyzing Figure 6, we observe that Pharo 4 classes were rarely refactored in succeed-
ing versions except Pharo 7 as the height of the Pharo 4 magenta bar remains the same
through Pharo 6. We believe this is due to the importance of the project GLM (Glam-
orous toolkit), and the general interest of developers to keep this project in the current,
already stable, status.

Finding 4: In Pharo 3, a major effort is put into adding comments to old classes
whereas in subsequent versions, more effort is put into updating comments of old
classes. Both cases show developers adding and updating comments of old classes.

3.4 Implications

The investigation performed on commenting trends presents important insights on the com-
menting habits of Pharo developers. These insights can assist developers and researchers in
the following aspects:

– Tool support to analyze the co-evolution of code and comments: Understanding software
evolution is crucial to ease various software development tasks such as understanding a
program, its software elements, finding the actual change that introduced a bug or de-
tecting change propagation patterns among software artifacts. Our comment evolution
results show that developers tend to add class comments to the old classes, however,
once the ratio of class comments to the total classes reached a particular level (at least
75%), developers do not allocate the same effort, thus indicating the stability of the sys-
tem. Also, we observe that developers put considerable effort into adding comments to
classes newly added to the Pharo core, which is in contrast with previous results in-
volving commenting practices of Java external systems (Fluri et al., 2009). Whether
such commenting behaviour is due to the expectation of better commenting practices
from core systems compared to the external systems or due to Pharo developer habits
requires further analysis. Fluri et al. showed that the Eclipse core system has a bet-
ter commenting ratio compared to non-core systems such as Eclipse JDT and Eclipse
PDE (Fluri et al., 2009). We observe similar behaviour in the Pharo core compared to
external projects. Still, these systems lack appropriate tools to analyze the co-evolution
of code and comments. We suggest that further research needs to be devoted to devel-
oping tools providing co-evolution views of code and comments to monitor better the
relative growth and quality of comments over time as well as the actual code comment
coverage (Zaidman et al., 2008).

What do class comments tell us in Pharo Smalltalk? 13

– More accurate tools to automate the detection of comment changes: Soetens et al. envi-
sion that future IDEs will use the notion of changes as first-class entities (AKA change
reification approaches). These change-based approaches can help in communicating
changes between IDEs and their architectures, and to produce accurate recommenda-
tions to boost complex modular and dynamic systems (Soetens et al., 2017). Analyzing
and detecting change patterns of comments can enable the vision of Soetens et al. of
integrating code comments easily in such change-oriented IDEs. Additionally, detect-
ing which types of information in the comments tend to change more often can help
researchers in automating the generation of code comments. For example, we found a
code change due to a class deprecation which triggers a comment change by adding
the deprecation notice in the class comment to inform other developers. This effort of
updating the class comment whenever a class deprecation code change is detected can
be reduced by generating the notice information automatically in the class comments.
These comment change patterns are not only helpful for developers to reduce their com-
menting effort but can also help researchers to improve their bug-prediction models.
For instance, Ibrahim et al. showed statistically significant improvements in their bug-
prediction models using comment update patterns; similarly, our comment update pat-
terns can be used for future work (Ibrahim et al., 2012).

– Leveraging changes data: Previous studies have leveraged the historical change data in
various ways, such as in designing new applications in the IDE (Soetens et al., 2017),
evaluating code completion algorithms (Robbes et al., 2010), and recommending future
changes in specific code parts (Fluri et al., 2009). In the context of comments, Fluri et al.
implemented a tool named ChangeCommander, which recommends comment changes
when a new method invocation is introduced in the system, based on the collected code-
comment change patterns (Fluri et al., 2009). However, the approach of Fluri et al. to
detect comment changes does not work entirely for the Pharo system due to its dynamic
nature, and its different comment structure and scope. Based on our code-comment
change analysis, we identified patterns of code changes in a class such as deprecat-
ing a class, or adding a new method which triggers comment changes more frequently
than other code changes. Future tools can utilize these patterns for recommending de-
velopers when to update class comments. From a technological point of view, Epicea
(a tool to log code changes in Pharo) supports source code changes on the class level.
Integrating the type of comment changes we identified in our study such as formatting
change, typo fix, instance variable change, and code-comment change patterns in it can
help to answer particular developer questions such as “What specific type of the code
change introduced this comment change? or “Which specific comment changes does a
commit consist of?” (Dias et al., 2014).

This investigation helped us to gather the general practices developers follow towards
class commenting but does not characterize the content of the comments, nor does it describe
how comments adhere to the commenting guidelines of Pharo. We cover these aspects in the
rest of this paper.

4 RQ2: Comment information types

With class comments being a primary source of detailed design and implementation doc-
umentation, developers add different types of information they deem important for the
class. The class comment in Pharo does not make use of any kind of annotation (e.g.,
@param,@return) as in other languages, and no fixed structure is followed to place the

14 Pooja Rani et al.

information in the class comment. A few comments we found are written using the Pillar
markup language,8 but the majority of comments do not adopt it, and instead are written in
a free-text style. The way of writing the same information thus varies among developers, so
extracting and analyzing a certain type of information from comments is non-trivial. Conse-
quently, to answer RQ2 (What types of information are present in Pharo class comments?),
we investigated the class comments manually. We performed a pilot study and formed an
initial taxonomy of comment information types. We then conducted a three-iteration-based
analysis on a sample set of 363 comments to finalize the taxonomy. Following the same
methodology, we analyzed 351 comments from external projects (not part of the Pharo core)
to verify the commenting practices of other developers.

4.1 Study Setup

To investigate the commenting practices, we studied the latest stable version of Pharo,
namely Pharo 7. Since each class has one class comment, all the classes with class comments
participated in the analysis dataset, resulting in a dataset of 6,324 classes. However, due to
the semi-structured nature of comments and the lack of content headers or annotations, a
content-wise investigation of comments requires manual effort, making the investigation of
the whole dataset a non-trivial task.

We therefore selected a representative subset of comments for manual analysis by defin-
ing the required minimum sample size n with the following standard formula (Triola, 2006):

samplesize(n) =
z2×p(1−p)

e2

1+(z2×p(1−p)
e2N)

N is the size of the dataset, e is the margin of error, p is the percentage of picking a comment
and the z is selected according to the desired confidence level. We calculated the required
sample size from the finite population of 6 324 to reach a confidence level of 95% and error e
of 5%. The z-score is 1.96 according to the confidence level and p is 0.5 used for the sample
size needed. The resulting dataset should therefore contain a subset of 363 class comments
in total. In order to choose 363 representative comments from the dataset, we investigated
the distribution of comments based on the number of sentences present in a comment shown
in Figure 7a. The sentences were separated using a custom-built Pharo sentence splitter. We
found that the number of sentences in the comments varies from 1 to 272. Therefore, we
used stratified random sampling approach to ensure that all kinds (or size) of comments
are represented in the manual analysis dataset in case of skewed population. This approach
divides the whole dataset into smaller strata based on the comment distribution and allows
withdrawing random samples from each stratum.

In order to select the 363 sample comments according to the approach, we used quin-
tiles from the logarithmic distribution based on the number of sentences in each class com-
ment shown in Figure 7b. Accordingly, we obtained five quintiles as follows 1, 1, 2, 6, and
272. Based on the quintile values, we obtained comment strata, and calculated the comment
proportion of each stratum shown in Table 3. We selected from each stratum a number of
comments that correspond to the proportion of such comments in the entire dataset, follow-
ing a random sampling approach without replacement. For example, from a total of 3 040

8 https://github.com/pillar-markup/pillar

https://github.com/pillar-markup/pillar

What do class comments tell us in Pharo Smalltalk? 15

0 50 100 150 200 250

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

Number of sentences

F
re

q
u

e
n

c
y
 o

f
c
o

m
m

e
n

ts

(a) Frequency of comments w.r.t comment length
1

2
5

10
20

50
10

0
20

0

N
um

be
r o

f s
en

te
nc

es
(b) Comments subgroup w.r.t number of sentences

comments of comment stratum “1-1”, we selected 175 comments i.e., 48% of 363 com-
ments using a random sampling approach without replacement. As the approach facilitate
the selection of a random sample from a stratum and not all strata are entirely homogeneous
(such as ‘3-6’ compared to ‘1-1’), we observed that the margin of error varies from 7% to
9% within strata (measured using the formula samplesize(n) for each stratum). On the other
hand, this approach is known to overall increases the precision instead of the individual
stratum; thus helping us in better selecting representative comments.

Table 3: Comment proportion per stratum for the whole dataset, and the resulting sample
dataset.

stratum #comments comment rate #selected for study

1-1 3 040 48% 175
2-2 945 15% 54
3-6 1 224 19% 69

7-272 1 115 18% 65

Total 6 324 100% 363

To verify the practices of Smalltalk developers in other projects than the Pharo core,
we analyzed the selected comments from seven external projects. We filtered the external
projects from GitHub9 based on several criteria: (i) the project is not part of the Pharo core,
(ii) it has an active project activity since 2019, and the project history spans at least two years
with at least 600 commits, (iii) it is not a repository for books, an article, or documentation,
(iv) it has more than five contributors, (v) the project does not contain more than 20% code
from other programming languages to avoid polyglot projects, e.g., opensmalltalk-vm con-
tains 89% code from C, and SmalltalkCI contains 35% shell scripts,10 and (vi) it contains

9 https://github.com/topics/pharo?o=desc&s=stars
10 https://github.com/OpenSmalltalk/opensmalltalk-vm

https://github.com/topics/pharo?o=desc&s=stars
https://github.com/OpenSmalltalk/opensmalltalk-vm

16 Pooja Rani et al.

more than 20 000 lines of Smalltalk code to remove small projects thus the projectsMateri-
alDesignLite,11 Kendrick,12 and PharoLauncher13 were removed.

We sorted the projects based on commits and size (based on lines of code), and selected
the top seven projects. The projects consequently vary in size, domain, and contributors.
For each project we followed the same methodology used for selecting representative Pharo
core comments. Depending on the proportion of each project’s comments with respect to the
comments of all projects, we selected the sample comments. We extracted 351 comments in
total from the selected external projects and analyzed their information types.14

4.2 Methodology

We conducted a pilot study to construct initial categories of the content of comments. We se-
lected a sample of 100 classes from Pharo 7 classes with comments (6 324) using a random
sampling approach. We used an open card-sorting approach and established the categoriza-
tion procedure for the next larger-scale study. The study was performed by the first author,
and the classification granularity was set to sentence-level. She manually analyzed the se-
lected 100 classes, constructed new categories, and placed the comment sentences into ap-
propriate categories according to the intent of the sentence. Thus, she formed 21 categories,
among them seven categories being inspired by the recent Pharo template.

She constructed the category names by looking at the intent of the sentence and type
of information, resulting in an initial draft of the Pharo-CTM.15 Once an initial taxonomy
was elicited from the pilot study, we started the taxonomy study on 363 further comments
to verify the completeness of the initial taxonomy, and to mitigate the chances of bias due
to analysis by a single evaluator.

4.2.1 Taxonomy study

In this study, three evaluators (two Ph.D. candidates, one of whom was involved in the
pilot study, and one faculty member, all authors of this paper) having at least four years
of programming experience, participated in the study. We divided our sample dataset (363
comments) equally among the three evaluators so that each subset (of size 121) had an equal
number of comments selected randomly from each of the groups identified (see column
selected for study of Table 3 according to the distribution shown in Figure 7b). This ensured
that each evaluator’s dataset included comments of all lengths and projects. Then, we used
a two-step validation approach to validate the content classification of the comment and
the category name assigned to the content type. This way, all the categories were discussed
by all the evaluators for the better naming convention, and whenever required, unnecessary
categories were removed and duplicates were merged.

Execution: The evaluators analyzed the assigned comments by applying a hybrid card-
sorting technique i.e., assigning class comments to the initial taxonomy, and adding new
categories whenever existing categories were found to be unsuitable for classifying the con-
tent. This step was performed to verify if the taxonomy was exhaustive, or if potential cate-

11 https://github.com/DuneSt/MaterialDesignLite
12 https://github.com/UNU-Macau/kendrick
13 https://github.com/pharo-project/pharo-launcher
14 File “RP/Dataset-for-Replication/Data/RQ2/external-projects” in the Replication package
15 File “RP/Results/RQ2/pilot-study/Pilot-study-result.xlsx” in the Replication package

https://github.com/DuneSt/MaterialDesignLite
https://github.com/UNU-Macau/kendrick
https://github.com/pharo-project/pharo-launcher
https://github.com/poojaruhal/CommentAnalysisInPharo/tree/master/Dataset-for-Replication/Data/RQ2/external-projects
https://github.com/poojaruhal/CommentAnalysisInPharo/tree/master/Results/RQ2/pilot-study/Pilot-study-result.xlsx

What do class comments tell us in Pharo Smalltalk? 17

gories were missing. Once we finished the assigned individual evaluation of the comments,
we started the collaborative validation explained next.

Validation: After analyzing all the comments, we validated the content classification of
the comments over three iterations. In the first iteration, each evaluator reviewed a random
50% of the comments categorized by the other two evaluators. This way, each comment
categorization was reviewed by at least one of the other evaluators. The reviewer (the eval-
uator who reviewed the comment’s classification) marked his/her opinion by agreeing or
disagreeing with each comment. In case of disagreement, the reviewer highlighted the dis-
puted categories and suggested changes. In the second iteration, the evaluator studied the
changes suggested by the reviewers and marked his/her agreement/disagreement for the
changes. In case of agreement, the classification was simply confirmed, otherwise the dis-
agreements were carried to the next (third) iteration where the third evaluator who had not
yet seen the comment reviewed it, and a decision was made based on majority voting. In
case all evaluators disagreed about a categorization, a discussion was started, and all three
then discussed it to agree on a final classification. Thus, only the marked discrepancies were
resolved by reviewing each case with the involvement of all three evaluators. The evaluators
used pair-sorting (Guzzi et al., 2013) to discuss discrepancies in their thoughts for each card
during the card sorting itself.

90

61

72

33

60

47

E3

E2

E1

Iteration 1

26

44

41

7

16

6

Iteration 2

Agree Disagree

6

13

5

1

4

1

Iteration 3

Fig. 8: The status of comment classification discrepancies by reviewers in each iteration per
evaluator

Levels of agreement and disagreement among the evaluators are reported in Figure 8.
Specifically, in the first iteration, the reviewers reviewed the classification by the first eval-
uator, (E1) and agreed on the classifications of 72 comments and disagreed with 47 ones,
suggesting changes for the disputed categories of 47 comments. In the second iteration, the
evaluator E1 agreed with suggested changes on 41 comments and disagreed with six. In
the third iteration, the cases where the reviewer and the evaluator disagreed were reviewed
by the third reviewer who had not yet seen the comment. The third reviewer agreed with
the classification of five comments, but disagreed with one suggesting a different classifica-
tion. Finally, for such a case, we discussed the conflict among all the evaluators and used a
majority voting mechanism to finalize the classification.

After reaching a final agreement on the comment classification, we validated the cate-
gory names. We gathered all categories, and merged some redundant categories or renamed
them using a majority voting mechanism, thus generating a final version of the taxonomy
i.e., Pharo-CTM.

18 Pooja Rani et al.

4.3 Results

Our taxonomy study led to the finalization of Pharo-CTM, identifying 23 types of informa-
tion (categories) present in the class comments The majority of these types, i.e., 21 cate-
gories, are taken from the pilot study even though several categories of the pilot study un-
derwent the refinement process (renaming, merging) for the final Pharo-CTM. From these
21 categories, seven belong to the Pharo template while six categories were merged to three
categories in the taxonomy study.16 The rest of the types, such as Subclasses Explanation,
TODO comments, and Others, were added during the taxonomy study.

Table 4 presents an overview of this taxonomy. The list of 23 identified information
types, with full details and examples is available online.17 The column Description de-
scribes the category, Implicitness level defines the degree to which information is hidden
in the text, and keywords lists the keywords and patterns observed during manual analysis
for each category. The Implicitness level is taken from a five-level Likert scale with items
Implicit, Often Implicit, Sometimes Implicit, Often Explicit, and Explicit. . A category is
marked Implicit when it is either in the same line or paragraph with other categories or with-
out a header in the comment, making it difficult to identify. For example, the category todo is
always mentioned in a separate paragraph with a header Todo, which makes it Explicit. On
the other hand, a majority of the time the category Intent is combined with Responsibility in
one line thus making them Often Implicit, but Collaborator is always combined with other
categories in the same paragraph without a header. Based on the formulated criteria, one
author evaluated the Implicitness level of each category, and other authors reviewed them
and possibly proposed changes. All authors resolved the disagreements by the majority vot-
ing mechanism and refined the measurement criteria by mutual discussions. The examples
for the categories are present in the respective category of classified comments.18 We found
that in one-line comments developers usually describe the Intent of the class, and a very few
times Responsibilities. A substantial number of comments contain warning information of
some type (e.g., a note about the code, or behavior of the class, an important point to keep in
mind while extending the class). In Others, we observed a few comments having the source
code from other languages and following the commenting style of other languages, such as
C and Java.

Figure 9 presents the distribution of the comments across all 23 categories. There are
seven template-inspired categories, which are colored in blue and the remaining categories
are colored in orange. The template-inspired categories contain the details proposed by the
recent template. Other categories, composed of 16 definitions, contain comment details that
developers deem important to understand their class and therefore mention in the class doc-
umentation.

Finding 5: The most recent Pharo class comment template suggests writing seven
different types of details, namely Intent, Responsibility, Public API, Example, Instance
Variable, Collaborators, and Internal details. Interestingly, developers frequently add
extra types of details such as Warnings, References to other classes and external docs,
Dependencies, and Contracts in the class comments.

In external projects, we found all 23 types of information embedded by developers as
shown in Figure 10, though the frequency of some information types in comments is not
as high as in Pharo core comments. For example, Collaborators, Implementation Points,

16 File “RP/Results/RQ2/pilot-study/pilot-study-categories.pdf” in the Replication package
17 File “RP/Results/RQ2/taxonomy-study/All-categories-with-examples.pdf” in the Replication package
18 File “RP/Results/RQ2/taxonomy-study/Taxonomy-study-results.xlsx” in the Replication package

https://github.com/poojaruhal/CommentAnalysisInPharo/tree/master/Results/RQ2/pilot-study/pilot-study-categories.pdf
https://github.com/poojaruhal/CommentAnalysisInPharo/tree/master/Results/RQ2/taxonomy-study/All-categories-with-examples.pdf
https://github.com/poojaruhal/CommentAnalysisInPharo/tree/master/Results/RQ2/taxonomy-study/Taxonomy-study-results.xlsx

What do class comments tell us in Pharo Smalltalk? 19

Table 4: The 23 identified information types

Category Description Implicitness level Keywords

Intent Describe purpose of the class Often Implicit I represent, I am,
I’m, This class is, A
Class is

Responsibility List responsibilities of the class Often Implicit provide, implement, I
do, I know, responsi-
ble

Collaborator List interactions of the class with other
classes

Implicit use, interact, provide,
collaborate

Public API List key methods and public APIs of the
class

Sometimes Implicit Key Messages, Pub-
lic API

Example Provide code examples to instantiate the
class and to use API of the class

Often Explicit Usage, Example, For
example, code exam-
ples

Implementation Points Provide internal details referring to the in-
ternal representation of the objects, particu-
lar implementation logic, conditions about
the object state, and settings important to
understand the class

Often Implicit Internal representa-
tions, Implementa-
tion points:

Instance Variables List state variables of the object Often Explicit instance variables:

Class references Overlaps with Collaborator category but in-
cludes extra cases when developers refer to
other classes in the class comment to ex-
plain the context of the class

Implicit

Warnings Warn readers about using various imple-
mentation details of the class

Often Implicit Note, do not, re-
marks, should

Contracts Inform readers about potential conditions
before or after using a class/method/com-
ponent of the class

Often Implicit Precondition:,
do..when..

Dependencies Describe the dependency of the class on
other classes/methods/components

Implicit used by

Reference to other resources Refer reader to extra internal or external re-
sources

Often Explicit See, Look

Discourse Inform the readers about a few class details
in an informal manner

Implicit developers use con-
versational language

Recommendation Recommend the ways to improve the class
implementation

Implicit recommended, see,
should be

Subclasses explanation Describe details about its subclasses, the in-
tent of creating the subclasses, and when to
use which subclass

Implicit My subclasses

Observations Record developer observations while work-
ing with the class

Often Implicit

License Store license information of the code Often Implicit

Extension Describe how to extend the class Often Implicit extend, extension

Naming conventions Record the different naming convention
such as acronyms used in the code

Implicit

Coding Guideline Describe rules to be followed for coding by
the developer while writing the class

Often Implicit

Link Refer to a web link for extra or detailed in-
formation

Sometimes Implicit

TODO comments Record actions to be done or remarks for
developers

Explicit todo

Other Include the comments from other program-
ming languages

Explicit JavaDoc comments

20 Pooja Rani et al.

1

1

2

3

4

3

5

4

8

10

11

21

29

34

33

43

40

51

57

75

134

231

256

0 50 100 150 200 250 300

License
TODO comments

Links
Coding Guidelines

Extensions
Other

Naming conventions
Observations

Subclasses explanation
Recommendations

Discourse
ReferencesOtherResources

Dependencies
Contracts

Key Messages
Instance Variables

Warnings
Implementation Points

Examples
Class References

Collaborators
Responsibility

Intent

Number of classes

C
at

eg
or

ie
s

Template inspired categories

Other categories

Fig. 9: Information categories of class comments formed during manual analysis of the
Pharo core (internal projects)

Contracts, and Dependencies are not found so often in the external projects as in the Pharo
core. Interestingly, we found that the project domain plays an important role in having a par-
ticular type of information. For instance, Roassal, a visualization engine project, contains a
high number of Examples in the comments. Most of the examples are small code snippets
to create different visualizations using the class. In contrast, we found detailed code exam-
ples (tutorials) in GToolkit class comments to explain how the project works. Additionally,
we found that template-inspired categories are not used so often as in the Pharo core. On
the other hand, some extra information types (not inspired by the template) are used more
often than in the Pharo core. A few such information types are Links, Recommendation, Sub-
classes explanation, and References to other resources. Specifically, we found Links in less
than 1% of Pharo core comments whereas nearly 6% of comments from external projects
contain Links. This suggests that the Pharo core and external projects contain similar infor-
mation types (23) but with different frequencies. Padioleau et al. analyzed operating system
(OS) and non-OS projects and found similarities and differences in the kinds of details in
project comments. However, whether these similarities are due to common developers or
coding guidelines, if any, is not investigated (Padioleau et al., 2009). On the other hand, our
preliminary investigation found few common developers from the external projects Moose,
GToolkit that contributed to the Pharo core projects as well. Whether developers change their
commenting practices in core and external projects would be an interesting topic to explore
in the future. Additionally, investigating the impact of the template on external projects in

What do class comments tell us in Pharo Smalltalk? 21

Color scale according to percentage of comments falling into a category

0 50 100

Internal

External

GToolkit

Seaside

Roassal

Moose

PolyMath

Petit

Pillar

O
ther

License

D
ependencies

Contracts

O
bservations

Recom
m

endations

Extensios

Links

D
iscourse

W
arnings

CodingG
uidelines

N
am

ingConventions

Todo com
m

ents

ClassReferences

SubclassesExplanation

ReferenceO
therResources

Im
plem

entationPoints

Exam
ples

K
eyM

essages

InstanceV
ariables

Collabartors

Responsibility

Intent

Categories

E
x

te
r
n

a
l

p
r
o

je
c
ts

T

o
ta

l

Fig. 10: The trend of information types in external Pharo projects and comparison of total
comments from Pharo external projects with Pharo internal (core) projects

addition to Pharo core comments can also highlight the differences in developer commenting
practices across projects.

Finding 6: External projects in Pharo also contain 23 types of information as found
in the Pharo core (internal projects). However, the frequencies of certain information
types vary.

Discussion: A very few categories are explicit, such as Examples, and Instance vari-
ables, and they are generally indicated by a header, such as Usage, and Instance variables
respectively. Most of the categories we found are implicit in the text and thus pose a chal-
lenge for the automated identification and extraction. However, we observed various patterns
for them. Such patterns can help the researchers in designing approaches and heuristics to
extract the specific information automatically. For implicit categories mentioned more fre-
quently, we observed that developers mostly use common keywords to indicate the specific
types of information in their comments. For instance, developers use a keyword Note while
describing any kind of warning, sometimes as a header as shown in Listing 1, or in the first
line of the warning shown in Listing 2 whereas in some cases the information is implicit in
the text as shown in Listing 3. Similarly to the implicit warnings, instructions for using a
class as in Listing 4 are implicit, without any header or specific pattern.

NOTE
As a workaround of bitblt bug, the actual Cairo surfaces, created

↪→ internally is with 1 extra pixel higher than requested.
This is, however completely hidden from users.

Listing 1: Explicit warning given in the “AthensCairoSurface” class

22 Pooja Rani et al.

(Note also that a Form can be copied to itself, and transformed in the
↪→ process, if a non-nil colorMap is supplied.)

Listing 2: Warning mentioned in the “BitBlt” class

They shouldn't be directly used and always be a part of a refactoring
↪→ namespace - the model.

Listing 3: Implicit warning given in the “RBAbstractClass” class

I am a public annoucement, sent when a new package is renamed.

Listing 4: Implicit Contracts given in the “RPackageRenamed” class

For categories like Intent, we observed that developers mostly mention the intent of the
class in the first line of a comment. For Class references, we observed that class names are
broken into words and not capitalized, thus making it hard to recognize the class name from
the text. Pharo does not provide any language mechanism to support private or public scope
for APIs, therefore APIs used by other services are generally marked Public by grouping
such APIs in a protocol (interface) named Public, and documenting these in the class com-
ment as a recommended practice. Additionally, we found that not all classes describe their
public APIs in the class comments, and not all public APIs of the class are mentioned. The
APIs mentioned are those that are considered to be important by the developer who is writ-
ing the comment e.g., the class “FTAllItemsStrategy” has eight methods, three of which are
public APIs, but not all three are mentioned in the comment, and only one API “realSearch”
is mentioned in the comment under the Public API and Key Messages section. Similarly, for
other information types, developers follow different commenting practices, and the writing
style shown in Table 4.

Finding 7: The top three types of information found in comments are template-inspired
categories and these categories are implicitly present in the text, but developers mostly
use common patterns or keywords in mentioning them.

All of these information types answer different developer questions in understanding the
program, and assist them in various software development activities. LaToza et al. surveyed
179 developers during coding activities and collected the questions perceived as being hard-
to-answer by developers (LaToza and Myers, 2010). Questions about rationale, intent, and
implementation are the topmost categories of those marked hard-to-answer by developers.
In our study, we also found that developers mention intent, rationale, and implementation
information in their comments with high frequency, indicating that developers find such
pieces of information important. However, these information types are implicit in the text,
which makes them hard to extract and present to the developers. Better tool support and
more studies are needed to address the general problem of identifying information types and
highlighting them to assist developers.

Code commenting practices in other systems. Several works in the past have explored
the idea of identifying the information embedded in code comments to leverage them in
various development tasks. We attempt to summarize these related works based on the de-
velopment systems, programming language, comment entity (e.g., class comments, inline
comments), and when possible, mapping their taxonomies to our taxonomy, as shown in
Table 5. Based on our comparison analysis, code commenting practices vary across pro-

What do class comments tell us in Pharo Smalltalk? 23

Table 5: Comparison of related works on comment information categorization
Note: M in the column Mapping to our taxonomy represents mapping of one category from
the related work’s taxonomy to multiple categories in our taxonomy

Study Comment types analyzed System analyzed Categories proposed Mapping to our taxonomy (M)

(Ying et al., 2005) Task comments [Java]: Eclipse Architect’s
Workbench (AWB) project

7 categories: communication, pointer to a
change request, bookmark, current task, fu-
ture task, location marker, concern tag

1 category: Task comments

(Padioleau et al.,
2009)

Source code comments [C]: Linux, FreeBSD, OpenSo-
laris [Java]: Eclipse, [C/C++]:
MySQL and Firefox

6 categories (comment content): type, in-
terface, code relationship, past future, meta,
explanation

5 categories: type (M), code relationship
(M), past future (Todo), meta (copyright),
explanation (M)

(Haouari et al., 2011) Source code comments [Java]: DrJava, SHome3D,
jPlayMan

3 categories (comment type): explanation
comments, working comments, commented
code, other

3 categories: explanation comments (M),
working comments (Todo), other (M)

(Steidl et al., 2013) Source code comments [Java]: CSLessons, EMF,
Jung, ConQAT, jBoss, voTUM,
mylun, pdfsam, jMol, jEdit,
Eclipse, jabref, C++

7 categories: Copyright comments, header
comments, member comments, inline com-
ments, section comments, code comments
(commented code), task comments

5 categories: copyright comments (li-
cense), header comments, member com-
ments (M), section comments (M), and task
comments (Todo)

(Pascarella and Bac-
chelli, 2017)

Source code comments [Java]: Apache (Spark,
Hadoop), Google (Guava,
Guice), Vaadin, Eclipse

16 categories: summary, expand, rational
(intent), deprecation (warning), usage, ex-
ception, TODO, incomplete, commented
code, directive, formatter, license, pointer,
auto-generated, noise

9 categories: summary (M), expand (M),
rational, deprecation, usage (M), TODO, li-
cense, pointer (M), noise

(Zhang et al., 2018) Source code comments [Python]: Pandas, Django,
Pipenv, Pytorch, Ipython,
Mailpile, Requests

11 categories: metadata, summary, usage,
parameters, expand, version, development
notes, todo, exception, links, noise

8 categories: metadata (M), summary (M),
usage, expand (M), parameters, develop-
ment notes(M), todo, links (M), noise
(other)

(Shinyama et al.,
2018)

Local comments (inside methods) [Java]: 1 000 projects [Python]:
990 projects

11 categories: Preconditions, post condi-
tions, value description, instructions, guide,
interface, meta information, comment out,
directive, visual cue, uncategorized

7 categories: pre conditions (contracts),
post conditions (contracts), value descrip-
tion (instance variables), guide (examples),
interface (key message), meta (license), un-
categorized (other)

(Hata et al., 2019) Links in comments [C], [C++], [Java],
[JavaScript], [Python], [PHP],
[Ruby]: Projects from GitHub

- Links

gramming languages and systems. For common information types present in the comments
across systems such as summary, links, code examples, we observed that they differ in the
way they are located in the system and the way they are written. Hata et al. investigated the
Links embedded in the comments and found top three links github.com, stackoverflow.com,
and en.wikipedia.com(Hata et al., 2019). In our analysis, none of the links from Pharo core
comments or external project comments point to github.com or stackoverflow.com. We did,
however, find instances of Links pointing to en.wikipedia.com in Pharo external projects.

Padioleau et al. explored comments in different programming languages by focusing
on Eclipse (IDE) written in Java, MySQL (a database server) and Firefox (a web browser)
written in C and C++. (Padioleau et al., 2009). We observed similar information types with
our taxonomy, such as code relationship, TODO, and deprecated code. In our work, we
also observed these information types in both internal and external projects, though with
lower frequency compared to Java, C and C++. Indeed, Padioleau et al. found that several
projects embed often these specific concerns, which can vary among different domains. For
example, OS-related projects contain a higher number of memory management, lock/syn-
chronization related concerns. In contrast, Eclipse comments include null references, error
management, or links to issue tracker services (e.g., Bugzilla). Similar results have been
reported by Pascarella et al. and Zhang et al. for code comments in Java and Python (Pas-
carella and Bacchelli, 2017; Zhang et al., 2018). In our study, we find that class comments
of Roassal contain a high number of code examples, with PolyMath containing more imple-
mentation details compared to other external projects. However, we did not find any error
management related information, or links to issue tracker services in Pharo class comments.
Similarly to other languages, Pharo class comments contain object-oriented programming
guidelines or design pattern details. Hence, our results show a high diversity in comment-
ing practices across various systems and languages. In future we plan to systematically and
more precisely compare class commenting practices in other popular languages.

24 Pooja Rani et al.

4.4 Implications

Finding different types of information embedded in class comment can assist developers to
quickly find and access information required for various development tasks. In this section,
we discuss the need of identifying information types in code comments of various applica-
tion domains and languages. We then discuss language-independent approaches to organize
and identify such information type automatically:

– Need to analyze class commenting practices in other systems: Previous studies, as shown
in Table 5 , have focused on classifying code comments, or specific types of information
on these comments (e.g., links and task comments). However, we observed that such
studies do not classify code comment information according to specific comment types
(e.g., package comments, class comments, function comments). According to standard
coding style guidelines, different comment types report various kinds of information.
For example, the Java Oracle style guideline suggests adding author information in the
class comments but not in the method comments. In contrast, Python PEP8 suggest to
place this information after the module docstring, and before the relevant statement.
On the other hand, in Pharo, the guidelines (and the class comment template) do not
mention about author information but we found instances of author information in the
class comments. This shows that class commenting guidelines varies across languages
but to what extent developer class commenting practices varies is still unclear and it
requires a systematic investigation. As various comment analysis approaches such as
automatic categorization of comments, comment generation, comment summarization,
and quality assessment of comments heavily use class comments, we argue that such
an investigation can help researchers in improving and generalizing these contemporary
approaches.

– Identify information types automatically: The task of accessing the type of information
embedded in comments depends on the kind of information (warning, rationale), level
of detail (design level or implementation level) developers seek, type of development
activities they are performing, and the type of audience (user or developers) access-
ing them. Tools to automatically identify these information types can reduce the effort
developers and other stakeholders invest in reading code comments when gathering par-
ticular types of information. In addition, on top of these automated tools, visualization
strategies could be implemented to highlight and organize the content embedded in the
comments, to further ease the process of obtaining the required information. For exam-
ple, identifying warnings from the comments can help turning them into executable test
cases and thus developers can ensure if the mentioned warnings is followed or not, and
the class does not contain a particular bug. Similarly, automatically identifying code ex-
amples from the comments and executing them can ensure that code examples are up to
date. In recent work by Pascarella et al. the authors build a machine learning-based tool
to identify information types for Java automatically (Pascarella and Bacchelli, 2017).
Similarly, Wang et al. developed such an approach for Python (Zhang et al., 2018). How-
ever, given the increasing trend of open-source systems written in multiple programming
languages, these approaches can be of limited use for developers contributing to these
projects (Tomassetti and Torchiano, 2014). Our work has the aim to foster the build-
ing of language-independent tools based on comprehensive taxonomies for comments
analysis of multi-language projects. Future studies can leverage our labelled data as a
starting point to build language-independent tools, and verify the correctness of their
tools.

What do class comments tell us in Pharo Smalltalk? 25

– Designing an annotation language: Annotation languages have proven to improve the
reliability of software.19 They can help the community in labelling and organizing a
specific type of information, and to convert particular information types into formal
specification which can further help in synchronizing comments with the code (Padi-
oleau et al., 2009). Even though Pharo comments do not follow any annotation, they
do have hidden patterns for different information types such as instance variables de-
noted by Instance variables or main methods of a class are indicated by Key Messages.
We identified various such patterns in constructing our taxonomy highlighted in Key-
words in Table 4. Pharo community can use such patterns in developing an annotation
language for Pharo comments. In our study, we find some information types express
properties (according to implicitness level in Table 4) which can be described via an-
notations such as Examples, public APIs, Links. Tool/language designers can utilize the
identified patterns to design information headers and annotations.

5 RQ3: Adherence of commenting practices to the template

Programming languages and communities not only provide guidelines to maintain uniform
coding styles, they also provide documentation guidelines for writing comments to have a
uniform commenting style across projects. Java has JavaDoc,20 Python follows a standard
documentation style,21 and Google suggests style guidelines.22 JavaDoc provides certain
guidelines such as “Class descriptions can omit the subject, and simply state the object, use
third person rather than second person.”23 In Pharo, developers are guided by a template,
shown in Figure 2, which recommends the use of first-person pronouns, writing complete
sentences, following CRC style, and providing extra information sections like Public API
and Key Message, Example, and Internal Representation. However, how the template has
evolved, what sections of the template are used more often than others, and to what de-
gree developer commenting practices conform to the template, are unknown. We investigate
these aspects in our third research question: RQ3: To what extent do developer commenting
practices adhere to the class comment template over Pharo versions?

After expanding our understanding of the templates gathered from all versions, we in-
vestigate the adherence of comments to the template. We define the adherence by focusing
on two main aspects: adherence to the content type, and to the writing style. We elaborate
these two aspects as:

– Content adherence: If the comments contain information types as mentioned in the
respective template, then we say the comments adhere to the template in the content
aspect.

– Writing style adherence: If the comments follow the writing style conventions of the
template, then we say the comments adhere to the template in the writing style aspect.
The writing style conventions are composed of various constraints formulated for each
template information type. If the comments containing specific information fulfill the
corresponding constraints, we say the comments adhere to the writing style.

19 https://docs.microsoft.com/en-us/cpp/c-runtime-library/sal-annotations?
redirectedfrom=MSDN&view=vs-2019

20 https://www.oracle.com/technetwork/java/javase/documentation verified on 28 Jan 2020
21 https://www.python.org/doc/ verified on 28 Jan 2020
22 https://developers.google.com/style/api-reference-comments verified on 28 Jan 2020
23 https://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

https://docs.microsoft.com/en-us/cpp/c-runtime-library/sal-annotations?redirectedfrom=MSDN&view=vs-2019
https://docs.microsoft.com/en-us/cpp/c-runtime-library/sal-annotations?redirectedfrom=MSDN&view=vs-2019
https://www.oracle.com/technetwork/java/javase/documentation
https://www.python.org/doc/
https://developers.google.com/style/api-reference-comments
https://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

26 Pooja Rani et al.

We measure the content adherence of the comments in section 4 by analyzing the content
of the selected comments manually.

To measure adherence to writing style, we first extract the guidelines from the template
regarding how a comment should be written. We convert the guidelines into writing style
constraints to identify the writing style influence of the template on the comments. Then
we manually analyze the 364 comments selected using stratified sampling, according to the
writing style constraints of corresponding template version. With the manual analysis study,
we verify our definition and uncover other patterns of writing style. Once we calculate both
aspects of comment adherence, we answer RQ3.

We argue that this analysis will help researchers in evaluating the usage and importance
of a comment template, and highlighting potential aspects to improve it.

5.1 Study Setup

To study the evolution of the template, we extracted the template from each Pharo version
since Pharo 1 and compared all template versions to record the differences.

In order to measure the adherence of commenting practices to the template, we extracted
the class comment template and a sample of an equal number of classes from each version,
then identified the information types they contain. The classes chosen for the study should be
the newly added classes of each version, to make sure that the developer got a chance to look
at the default template. This is because, in Pharo, the template appears only when developers
add a class comment to the class for the first time. For each comment in the sample set (363)
used in the RQ2, we therefore identified the original Pharo version when the comment was
first added to the class. We then extracted the class comment of that version to compare the
comment to the corresponding template in content and writing style aspects. For example,
for a class comment added in Pharo 2, we compared the comment to the Pharo 2 template.

This partitioning of 363 comments according to the original Pharo version led to an
unequal number of comments for each Pharo version e.g., out of 363 comments version 2
has fewer than 40 comments whereas version 7 has more than 60 comments. Furthermore,
to compare the class commenting practices of all versions across each other, we selected an
equal number of comments from each version. To balance the equal sample comments from
each version, we set a lower threshold of 52 comments for each Pharo version, summing
to a total of 364 comments. We extracted more comments from the Pharo versions where
the number of comments were fewer than 52, mainly Pharo 2 and Pharo 4. For each such
version, we selected the sample classes from newly added classes with comments shown
in the top dark blue segment of Figure 3 according to the distribution of comments based
on the number of sentences present in a comment. Similarly, we removed the classes from
Pharo versions where the number of classes was greater than 52, mainly Pharo 1, Pharo 6,
and Pharo 7, based on the distribution of comments of each version. We followed the same
approach to choose representative comments as used in 363 comments from the earlier study
(taxonomy study).

What do class comments tell us in Pharo Smalltalk? 27

5.2 Methodology

5.2.1 Template Evolution

We analyzed the template of each Pharo version and created a template meta-model for each
version. When a class is created, a default class comment template is added to the class, e.g.,
the recent template is shown in Figure 2. We created a class with one instance variable and
then observed the changes in the default class comment template. According to the available
details in the comment template, each author of the paper prepared their own interpretation
of the template model for each Pharo version. Once we prepared the template models for all
versions, we compared and discussed them to reconstruct and establish one template model
for each version. There were few intermediate Pharo versions where the template had not
changed; in such cases we used the same template model from the earlier version. Thus
each template model captures the differences from preceding and succeeding versions and
presents the evolution of the template (models of the various template versions are reported
in Figure 12).

5.2.2 Adherence of comments to the template

We grouped all 364 comments according to their original Pharo versions (when the comment
was first added to the class) so that we could differentiate the comments of one version from
another version, analyze their evolution, and compare them to the corresponding template of
that version. Then we identified the comment information types of 364 comments following
the methodology used for the taxonomy study. Once we identified the comment information
types of all comments, we identified the information types and writing style guidelines from
the templates by studying the content of each template corresponding to the Pharo version.
Three authors of the paper participated in the study and analyzed each version’s template
independently. Then, we used a two-step validation approach, thus validating the content
classification of the template and the name assigned to the classified content. Specifically,
the content classification was validated by an iterative evaluation process where each eval-
uator reviewed the other’s content classification. This way, all the information types were
discussed by all the evaluators for the better naming convention and classification.

Similarly, we extracted the writing style guidelines hinted by each information type of
each version’s template, discussed among ourselves and formulated several constraints for
each information type. For instance, For the Class part section of the Pharo 7 template in
Figure 2 is identified as Intent information type. For this type, we extracted the guidelines
from the keywords State one line, I represent and converted them into rules such as de-
scription should be one line, subject should be first person, and have a pattern of <subject>,
<verb> from I represent. The process of finalizing the constraints for all information types
of the Pharo 7 template is shown in the replication package.24

The final constraints for the Pharo 7 template are shown in Figure 11. A complete list of
all constraints and their examples for each Pharo version can be found in Appendix A. There
were few intermediate Pharo versions where the template had not changed; in such cases we
used the same information types and writing style guidelines from the earlier template.

Content adherence: After identifying all the information types from each template ver-
sion, we compared them to each version’s information types identified via Pharo-CTM. For

24 File “RP/Results/RQ3/Constraints-definition-for-template-writing-style.xlsx” in the Replication pack-
age

https://github.com/poojaruhal/CommentAnalysisInPharo/tree/master/Results/RQ3/Constraints-definition-for-template-writing-style.xlsx

28 Pooja Rani et al.

Class

Intent

description: Text1
InstanceVariable

 name: Identifier
 type: Object

0..*

KeyMessage
name: Identifier 0..*

1InstantiationProcess
description: CodeOrText 0..*

Collaborator
name: Identifier
interactions: Interaction

Example
description: CodeOrText

0..*ImplementationPoint
description: CodeOrText 0..*

if self.description -> notEmpty()
then
 self.description.lines = 1.
 self.description.style = firstPersonPronouns.
 self.description.useSimilarWordsTo = ‘I represent’.
end if

self.listOfInstanceVariables -> notEmpty()
then
 self.name and self.type -> notEmpty()
end if
self.header = ‘instance Variable’.

if self.description -> notEmpty()
then
 self.description.lines <= 3.
 self.description.style = firstPersonPronouns.
 self.description.useSimilarWordsTo = {‘I do’, ‘I know’).
end if

self.interactions.lines = 1.
self.description.style = firstPersonPronouns.
self.description.useSimilarWordsTo = ‘I interact’.

Responsibility
0..* description: Text

self.description = CodeOrText.
self.description = CodeOrText.
self.header = ‘Implementation Points’ or ‘Internal Represenation’

self.listOfKeyMessages -> notEmpty()
self.header = ‘Public API’ or ‘Key Messages’.

self.description = CodeOrText.

Fig. 11: Writing style constraints formulated for Pharo 7 template

example, for a class comment added to the class in Pharo 2, we compared the information
types of the comment to the information types identified from the template that existed in
Pharo 2, thus comparing what developers typically write in their comments to the informa-
tion proposed by the template.

Writing style adherence: Some of the constraints identified from a template can be
verified automatically in the comments and do not require manual intervention but could
lead to less reliable results due to the freedom of writing free text in the class comments,
non-availability of formatting standards, and limited patterns available in the template. Ad-
ditionally, there are chances to miss the cases where selected patterns are not present, and
instead developers use synonyms to describe the same detail or do not describe the detail
under a specific section header, say Instance variables, and just write the instance variable
details without any header. We therefore manually analyzed the 364 comments (52 com-
ments from each version) in the same setup of our studies of manual analysis performed
in RQ2 and RQ3 for identifying the information types. We followed the same iterative ap-
proach for evaluating the writing style constraints and the same validation approach as used
in the taxonomy study. We used the pair sorting approach to decide whether a sentence in
the comment fulfills the constraints, and was influenced by the template or not.

After collecting all the data, we used statistical tests to verify whether there is a sta-
tistically significant difference between the scores (e.g., the number of classes that adhere
to the Pharo template style) when observing different Pharo versions. We employed non-
parametric tests since the Shapiro-Wilk test revealed that the number of commented classes
among Pharo versions do not follow a normal distribution (p � 0.01). Hence, we used
the non-parametric Wilcoxon Rank Sum test with a p-value threshold of 0.05. Significant
p-values indicate that there is a statistical significant difference between the scores. In addi-
tion, we computed the effect-size of the observed differences using the Vargha-Delaney Â12
statistic (Vargha and Delaney, 2000). The Vargha-Delaney Â12 statistic also classifies the
obtained effect size values into four different levels (negligible, small, medium and large)
that are easier to interpret.

What do class comments tell us in Pharo Smalltalk? 29

5.3 Results

5.3.1 Template Evolution

Variable
 name: Identifier
 type: ProtoObject

0..*

0.* Collaborator

1 Intent

 className: Identifier
Class

InstanceVariable ClassInstanceVariable

(a) Template model of Pharo 1

InstanceVariable
 name: Identifier
 type: Object
description: Text

0..* 1 Intent
description: Text

 className: Identifier
Class

(b) Template model of Pharo 2 and 3

Class

InstanceVariable
 name: Identifier
 type: Object

0..*

KeyMessage
name: Identifier 0..*

1
InstantiationProcess

description: CodeOrText 0..*
Collaborator

name: Identifier
interactions: Interaction

Example

description: CodeOrText0..*
ImplementationPoint

description: CodeOrText
0..*

Responsibility
0..*

description: Text

MyAction

ServiceOffered

Intent
className: Identifier
description: Text

1

(c) Template model of Pharo 4

Class

InstanceVariable
 name: Identifier
 type: Object

0..*

KeyMessage
name: Identifier 0..*

1
InstantiationProcess

description: CodeOrText
0..*

Collaborator
name: Identifier
interactions: Interaction

Example
description: CodeOrText0..*

ImplementationPoint

description: CodeOrText
0..*

Responsibility
0..* description: Text

MyAction

MyKnowledge

1 Intent
description: Text

(d) Template model of Pharo 5, 6 and 7

Fig. 12: Template models for Pharo versions

Analyzing the template meta-models in Figure 12, we found that in the first Pharo tem-
plate version shown in Figure 12a, the template includes class side and instance side vari-
ables, and adds the class name and instance variables name by default. In later Pharo ver-
sions, class side variable information is omitted, and is shifted to the class side template.
In the second and third Pharo versions in Figure 12b, the template adds a description line
for each instance variable to encourage developers to explain each instance variable. Addi-
tionally, the first line of the template refers to the intent of the class. In Pharo version 4 in
Figure 12c, the template underwent major changes and incorporated the CRC design to en-
courage the developers to describe the class intent, its responsibilities and its collaborators.
The template presents different types of details to include in the class comment, and also
give examples to show developers how to write a comment. Since Pharo version 5 shown in
Figure 12d, the template remains the same. Compared to the previous Pharo version 4, the
template asks developers to document “what I know” rather than “what services do I offer”
in the responsibility section.

We also observed that in Pharo version 1, there is a common template for the class side
and the instance side. Then in later versions (from version 2 to 6), different default templates
exist for the class side and the instance side. In recent version (7), again a single template
is introduced for both the class side and the instance side. The reason for removing such a
feature can be to simplify the template behavior, but this loses the facility of documenting
the class side instance variables automatically in the template.

30 Pooja Rani et al.

5.3.2 Adherence of comments to the template

This section aims at understanding the template of each Pharo version, finding the differ-
ences among templates, and comparing the commenting practices of developers with the
class comment template. For each part of the question, we present our results and discus-
sion.

Content Adherence: Analyzing the information embedded in the comments shows that
developers document different kinds of information in the class comments to make their
classes more understandable and maintainable. However, whether the practice of embed-
ding various information types in the class comments is recent or present from initial Pharo
versions, is unexplored and unknown.

 Color scale according to number of comments falling into a category
 0 25 52

0 26 52

1 (52)

2 (52)

3 (52)

4 (52)

5 (52)

6 (52)

7 (52)

Other
License

Dependencies

Contracts

Observations

Recommendations

Extensios

Links
Discourse

Warnings

CodingGuidelines

NamingConventions

Todo comments

ClassReferences

SubclassesExplanation

ReferenceOtherResources

ImplementationPoints

Examples

KeyMessages

InstanceVariables

Collabartors

Responsibility

Intent

Categories

Ph
ar

o
ve

rs
io

ns
 (t

ot
al

 c
la

ss
es

)

Fig. 13: The trend of information types in Pharo versions

In Figure 13, the x-axis lists the information types, and the y-axis shows the Pharo ver-
sions with a number of classes considered for each Pharo version. A darker shade of orange
indicates a large number of comments having a particular type of information, and a lighter
shade indicates a smaller number of comments falling into the information type. From our
analysis, we found that most of the information types are present in the comments since
Pharo 1 except Todo comments, Coding Guidelines, and Observations. A few information
types like Intent, Responsibility, Collaborators, and Examples are highly frequent in all ver-
sions of Pharo.

Looking at Table 6, we see that the template suggests only a few information types
to write in the class comment, especially in the initial three Pharo versions. Later on, the
template suggested seven types of information. However, there are other information types
mentioned by developers than those suggested by the template. For example, the Pharo 1
template mentions three types of information shown in Table 6, but developers mention
20 other types of information shown in Figure 13. In the most recent template, among 23

What do class comments tell us in Pharo Smalltalk? 31

Table 6: The trend of information types in Pharo Template versions

version categories

1 Intent, Collaborator, Instance Variables
2-3 Intent, Instance Variables
4-7 Intent, Responsibility, Collaborator, Instance Vari-

ables, Key Messages, Example, Implementation
Points

types found in the comments only seven are present in the template. Analyzing the devel-
oper practices of writing information seen in Figure 9, we found that the information types
suggested by the template are mentioned more frequently in the comments than other infor-
mation types found in comments. For instance, Intent and Responsibility are present in 65%
of sample class comments, while Warnings is present in 12% of the sample class comments,
indicating the relevance of the template in terms of its information types..

Finding 8: Most of the information types are available in the comments since Pharo
version 1. A few information types like To do comments, Coding guidelines, and Ob-
servations are not found in the initial version.

Finding 9: The template-suggested information types are mentioned more frequently in
the comments than other types of information.

Writing Style Adherence: Analyzing Figure 14a, we observe that Pharo 1 comments

●●●●

Pharo1 Pharo2−3 Pharo4 Pharo5−6−7

0
20

40
60

80
10

0

Pharo Versions

St
yl

e
ad

he
re

nc
e

(%
)

5, 6, 742, 31

(a) Distribution of the differences between Pharo
versions

0 0.5 1

1 (52)

2 (52)

3 (52)

4 (52)

5 (52)

6 (52)

7 (52)

Intent
Responsibility

Collabartor

InstanceVariable

KeyMessages

Example

KIP
Other

Ph
ar

o
ve

rs
io

n
(t

ot
al

 c
la

ss
es

)

Categories

(b) The trend of following the writing style rules in
Pharo versions

Fig. 14: Comments following the writing guidelines over Pharo versions

follow the rules 50% of the time whereas, since Pharo 4, the trend of comments adhering to
the style rules increased to 75%. To understand these differences between Pharo versions, we
grouped comments according to the changes in the template e.g., the template in Pharo 2 and
Pharo 3 has been the same, therefore, we grouped the comments from Pharo 2 and Pharo 3

32 Pooja Rani et al.

and measured the percentage of comments adhering to the writing style rules. After grouping
the comments according to the version, we use the Wilcoxon test as well as the Vargha-
Delaney Â12 statistic to observe potential statistical significant differences in the results
achieved by classes of the grouped versions. The results of the Wilcoxon test highlight a
marginal significant difference (i.e., p-values of 0.0673) is observed between Pharo 1 and
the Pharo 4, 5, 6 groups. For these groups, the Vargha-Delaney statistic also reveals that the
magnitude of this difference is large.

Finding 10: Developer commenting practices adhere more to the writing style guide-
lines since Pharo 4 especially in describing the Intent, Responsibilities, and Instance
Variables of the class.

We further explored the differences between Pharo versions by measuring the adherence
of comments to specific information types of each template version shown in Figure 14b. We
found that Example and KIP (Key Implementation Points) are always consistent due to un-
availability of strict guidelines to write them. The rule in the Example section mostly checks
the presence of an example in the comment written either in natural language or a code
snippet, but the templates do not suggest any guidelines to write and format it. Developers
therefore follow various conventions to mention examples, such as using dedicated headers
Usage, Examples, Code examples. Similarly, for KIP, one of the rules just checks the pres-
ence of the implementation details in the comment. Another rule in KIP section suggests
to write the header Internal representation and Implementation points while mentioning the
implementation details, but this is rarely followed by developers.

I am a base class for commands which perform operations with
↪→ collection of methods.

Internal Representation and Key Implementation Points.

Instance Variables
methods: <Collection of<CompiledMethod>>

Listing 5: Implementation points header present in the “SycMethodCommand”
class

In our analysis, we found several comments where only the header is present, but no
further details are mentioned below the header. We believe this is due to a lack of attention
from developers in deleting unused section headers. One of the cases we encountered is
in the class “SycMethodCommand”, shown in Listing 5, where the developers have not
provided any details under Internal representation and Implementation points section, but
the header is still present. In the case of writing the Instance Variable information, its header
is mentioned in most of the cases with the instance variables. One of the reasons for such a
behavior can be the feature of Pharo of adding an instance variables section automatically
to the class comment template if the class is created with instance variables.

We observe a high degree of inconsistency in using or not using headers to delimit dif-
ferent information types in class comments. In Figure 15b (Header rule) we see that the use
of headers fluctuates significantly across all Pharo versions. We note a similar fluctuation in
the adherence to the rules to document instance variables and Key APIs as lists (Figure 15b,

What do class comments tell us in Pharo Smalltalk? 33

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7

%
 o

f c
om

m
en

ts
 fo

llo
w

in
g

th
e

ru
le

s

Pharo versions

Third-person First-person

(a) Comments following subject-form guidelines

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7

%
 o

f c
om

m
en

ts
 fo

llo
w

in
g

th
e

ru
le

s

Pharo versions

Header rule Listing rule

(b) Comments following formatting guidelines

Fig. 15: Comments following different guidelines over Pharo versions

Listing rule). This indicates the need to have a better and consistent standard for formatting
and providing headers for different information types.

Finding 11: In the majority of Pharo versions, fewer than 40% of the comments make
use of the headers suggested by the comment template. Where headers are used, devel-
opers often use different and inconsistent headers for the same information types.

On the other hand, for a few rules, we notice the consistent declining rate of following
them. For instance, in Pharo 1, the rules ask developers to write specific information types
in the third person. Instead, developers often write this information in the first person. Since
Pharo version 5, such rules are respected more than 50% of the time, showing the increas-
ing usage of first person. We confirm our observation by mining the rules related to first
person and third person from all information types in all versions as shown in Figure 15a,
and find that the usage of third person started declining in the initial versions even though
the template proposed to use it. In later versions since Pharo 4 the usage of first person
and active-voice rules is increasing, however, it is still not entirely followed, showing the
inconsistency of the writing style in comments.

Finding 12: Developers use various verb forms to describe the top three information
types Intent, Responsibilities, and Collaborators of a class but mainly adhere to the
template’s use of the first-person pronouns.

Discussion. Examining the information types suggested in the template (seven cate-
gories), we found that a few information types like Intent, and Responsibility are found
more frequently in the comments than other details, indicating that developers follow the
template in writing the template information types. On the other hand, the availability of ex-
tra information types mentioned in different writing styles without a consistent header, like
warnings, points out the need for adapting the template to the developer needs. We believe
that adding the commenting guidelines for other frequent information types in the template
will encourage developers to add such details uniformly to their class comments whenever
necessary. We specifically suggest to add headers and organization guidelines about the ex-
tra frequent categories to the template, which are not currently present: Reference to external
resources, Warnings, Contracts, Dependencies, Observation, and Todo.

34 Pooja Rani et al.

We additionally observed that Pharo class comments range from high-level design de-
tails to low-level implementation details. This unique way of documenting can help de-
velopers and users to get all the information about the class from one place, but poses a
challenge at the same time in identifying the specifically required information from such an
interwoven text. Not all developers need to know the low-level details of the class. A study
by Cioch et al. (Cioch et al., 1996) proposes different documents for each stage, e.g., interns
require task-oriented documentation such as process description, examples, and step-by-step
instructions, whereas experts require low-level documentation as well as a design specifica-
tion. In the current state of Pharo comments, developers seeking a specific type of informa-
tion have to go through the whole comment due to the lack of annotations, the non-uniform
way of placing information, and the relaxed style conventions. Similarly, users looking for
design details have to go through the implementation details. Building tools to automatically
identify and highlight information from the class comment, according to the desired level
of detail and the targeted users of the information, could help developers to search more
efficiently within documentation. At the same time, such tools could also be used to identify
the parts of the code that are poorly documented, thus generating documentation fixes.

Analyzing the writing style aspect, we find that developers follow a mix of the first per-
son and third person to express the same information about the class. Although more than
75% of the comments of recent versions follow the writing style conventions of the tem-
plate, there is a substantial proportion of comments that are written differently, creating an
inconsistent style across projects. This suggests a need for better structure conventions, as
the template does not follow any strict structural guidelines to organize the content, thus
making developers look through the whole comment to find a piece of information. En-
couraging developers to follow structural guidelines in the text, and writing comments with
standard headers will allow other developers to extract information from them more easily.
We suggest that the Pharo comment template should impose a formatting and markup style
to structure the details in comments.

5.4 Implications

Assessing the adherence of comments to the suggested guidelines provides important direc-
tions on how to maintain comments and keep them consistent with such guidelines. Based
on our study insights, we provide implications for developers and researchers to address the
comment quality and consistency with commenting guidelines:

– Verifying comments adherence in other languages. To write useful and consistent com-
ments, numerous programming languages such as Java and Python, and communities
such as Google and Oracle, provide coding guidelines (Google Style Guidelines, veri-
fied on 10 April 2020; Oracle Documentation guidelines, verified on 10 Sep 2020). For
example, Oracle’s guidelines suggest “using third person (descriptive) style and sec-
ond person (prescriptive)” while writing documentation comments, but it is not known
whether developers actually follow this guideline in their comments or not. To ensure de-
velopers follow such guidelines, various automated style checkers or linters e.g., Check-
style,25 Pylint,26 ESLint27 turn such guidelines into rules and then evaluate the rules

25 https://checkstyle.org/checks.html, accessed on 10 Sep, 2020
26 https://www.pylint.org/, accessed on 10 Sep, 2020
27 https://eslint.org/, accessed on 10 Sep, 2020

https://checkstyle.org/checks.html
https://www.pylint.org/
https://eslint.org/

What do class comments tell us in Pharo Smalltalk? 35

against comments automatically. However, these style checkers are not available for all
programming languages, and for the supported ones, they provide limited rules for ad-
dressing code commenting guidelines. The majority are limited to detecting missing
comments and verifying formatting guidelines, but not the content of comments con-
cerning guidelines. Our results on Pharo show that developers embed template-inspired
information types in the class comments. Moreover, they also follow the content guide-
lines, in addition to various syntactic guidelines, to add information types. Whether
developers follow similar commenting guidelines (suggested by the coding guidelines)
in other programming languages is not yet explored. Our dataset provides relevant data
in which one can observe which commenting guidelines developers frequently follow in
their comments and which they do not. Thus, from our data it is possible to build com-
ment assessment tools for Pharo, aimed at evaluating whether developers follow specific
guidelines. More research effort needs to be devoted to conduct similar studies for other
languages.

– Comment quality tools: High-quality code comments facilitate developers in various
development and maintenance tasks (de Souza et al., 2005). However, ensuring their
quality requires several content and style-related factors to be a considered, which is
a non-trivial problem. Several factors, such as consistent formatting and grammar, and
the structure of provided information influence readability of a text reported in com-
ments (DuBay, 2004; Cadwell, 2008). Researchers have provided various heuristics-
based approaches to evaluate comment quality (Khamis et al., 2010; Steidl et al., 2013;
Scalabrino et al., 2016). However, these approaches provide limited checks, they focus
on particular programming languages (mainly Java), and they are not designed to be used
for other domains and languages (Khamis et al., 2010; Steidl et al., 2013; Scalabrino
et al., 2016). In particular, most approaches are based on language-specific heuristics
such as comment syntax, common keywords used in the comments, and the supported
annotations for comments (Khamis et al., 2010; Steidl et al., 2013), which cannot be
directly applied to other languages. For instance, in Pharo code comments follow a dif-
ferent comment structure and writing style, and do not rely on annotations, which makes
these approaches not suitable for this language. In addition, Tan et al. also showed that
previous approaches concerning the detection of inconsistencies in the comments re-
quire adaptation to new domains and languages (Tan et al., 2007a). Hence, our study
insights about Pharo commenting practices provide further data to help researchers in
designing tools for assessing comment quality across other languages and domains.

– Template-based comment generation and code summarization approaches: Comment
templates not only provide developers with concrete examples on how to write com-
ments, but can also employed by researchers to enable automated generation of code
comments for various code entities. In recent work, Moreno et al. proposed a template-
based approach to automatically generate comments for Java classes Moreno et al.
(2013). Their template includes certain types of information which they deem essential
for understanding a Java class. However, the information types included in the template
were not derived from class comments written by developers in Java, which could make
them potentially out of date with current Java commenting practices. In Pharo, class
comments are guided by a default template which includes seven types of information
considered important to document a class. We observed in our study that developers
write template-inspired information types more often compared to other information
types found in comments. We compared the information types included in the class
comment template by Moreno et al. and Pharo class comment template. We observed
that their template does not include information types such as related classes, algorith-

36 Pooja Rani et al.

mic implementation details, or an example to show the usage of the class. In contrast,
Pharo template includes these information types and Pharo developers frequently refer
them and with headers Collaborators, Implementation points, and Example respectively.
On the other hand, both templates suggest describing the intent of the class, responsibil-
ities of the class and the main important methods, which are again frequently reported
by Pharo developers. Thus, our study insights suggest that further information, typically
embedded by developers in code comments developers, need to be included in template-
based comment generation or code summarization approaches.

6 Threats to validity

We now outline potential threats to the validity of our study.
Threats to construct validity mainly concern the measurements used in the evaluation.

First, we are aware that, to answer research questions RQ2 and RQ3, we sampled only a
subset of the extracted class comments. However, (i) the sample size limits the estimation
imprecision to 5% of error for a confidence level of 95%, and (ii) to limit the subjective-
ness and the bias in the evaluation, three evaluators (three authors of this work) manually
analyzed the resulting sample.

Another threat to construct validity concerns the definition of the taxonomy, informa-
tion types, and writing rules from the template, which are performed on data analyzed by
three subjects. Indeed, there is a level of subjectivity in deciding whether a Pharo comment
type belongs to a specific category of the taxonomy or not. To counteract this issue, we per-
formed a two-level validation step. This validation step involved further discussion among
the evaluators, whenever they had divergent opinions, until they reached a final decision.

Threats to internal validity concern confounding factors that could influence our results.
To analyze the commenting trend of old and new classes, we map the classes by their name.
This implies that a renamed class will be considered to be a new class, underestimating the
tendency to comment old classes. The main threat to internal validity in our study is that the
assessment is performed on data provided by human subjects, hence it could be biased. To
counteract this issue, the evaluators of this work were two Ph.D. candidates and one faculty
member, each having at least four years of programming experience. To make transparent
all decisions drawn during the evaluation process, all results of the various validation steps
are shared in the replication package (to provide evidence of the non-biased evaluation) and
described in detail in the paper.

A second threat involves the taxonomy definition since some of the categories could
overlap or be missing in the Pharo-CTM. To alleviate these issues one of the authors per-
formed a pilot study involving a validation task on a smaller set of Pharo comments. Then
a wider validation was performed involving three authors of this work. A final threat to the
internal validity is represented by the possibility that the chosen sample comments are not
representative of the whole population. To handle this problem we used a stratified sampling
approach to choose the sample comments from the dataset, thus considering the quintiles of
the comment distribution shown in Figure 7b.

Threats to external validity concern the generalization of results. The main aim of this
paper is to investigate the class comments and commenting practice evolution characterizing
the Pharo core system. Programmers developing an end-user application might have entirely
different commenting practices. To alleviate this concern to some extent, we analyzed a sam-
ple set of comments from a combination of external projects from the Pharo ecosystem. The
projects vary in terms of size, contributors and popularity. Thus, our empirical investigation

What do class comments tell us in Pharo Smalltalk? 37

is limited to the Pharo ecosystem, and not generalizable to other programming languages.
On the other hand, our results highlight how previous findings on other programming lan-
guages — such as Java (Steidl et al., 2013; Pascarella and Bacchelli, 2017), showing that
comments contain information like exceptions, IDE directives, bug references, formatters to
separate code into logical section, and author ownership — are not applicable to the Pharo
Smalltalk environment. However, it is important to point out that variables such as developer
experience (e.g., more experienced developers could be more prone or be more aware of the
actual Pharo commenting practices) could have influenced the results and findings of this
work.

Finally, during the definition of our taxonomy (i.e., Pharo-CTM) we mainly rely on a
quantitative analysis of class comments of Pharo, without directly involving the actual Pharo
developers. Thus, for future work, we plan to involve developers in the loop, via surveys and
(face-to-face or conference call) interviews. This step is particularly important for proposing
and evaluating automated approaches that can help them achieve a high quality of comments.

Conclusion Threats. We support our findings by using appropriate statistical tests, such
as the Wilk-Shapiro normality test to verify whether the non-parametric test could be applied
to our data. Finally, we used the Vargha and Delaney Â12 statistical test to measure the
magnitude of the differences between the studied distributions.

7 Related Work

7.1 Comment Evolution

Comments play an important role in program comprehension, development, and mainte-
nance tasks. Considering their importance and role, several researchers have performed
studies to analyze comments quantitatively and qualitatively. Woodfield et al. study the
usefulness of comments quantitatively, and measure the effects of comments on program
comprehension (Woodfield et al., 1981). They find that the groups of programmers who
were given a program with comments were able to answer more questions about a program
in a quiz than the programmers who were given the program without comments. A few
studies focus on the evolution of comments. Schreck et al. qualitatively analyze the evolu-
tion of comments over time in the Eclipse project (Schreck et al., 2007), whereas Jiang et
al. (Jiang and Hassan, 2006) quantitatively examine the evolution of source code comments
in PostgreSQL. Their focus is on comments associated with functions while we study the
comments associated with classes in Pharo and focus on analyzing the comments quantita-
tively over Pharo versions.

Fluri et al. analyze the co-evolution of code and comments in Java and discover that
changes in comments are triggered by a change in source code (Fluri et al., 2007). They
compute the ratio between source code and comments to present a trend analysis, and find
that newly-added code is barely commented. Interestingly, in contrast to their results, we
find that the commenting behavior of developers in Pharo is different. Developers comment
newly-added code, as well as commenting old classes. In another study, Fluri et al. claim that
the investigation of commenting behavior of a software system is independent of the object-
oriented language under the assumption that common object-oriented languages follow sim-
ilar language constructs to add comments (Fluri et al., 2009). We investigate the assumption
with another object-oriented programming language and discover that Pharo follows a dif-
ferent comment convention for class comments. Pharo separates the class comment from the

38 Pooja Rani et al.

source code and supports different kinds of information like warnings, pre-conditions, and
examples in class comments.

7.2 Comment information categorization

Comments contain useful information to support various tasks in software development cy-
cle. Previous literature has explored this idea and analyzed various systems to find the infor-
mation contained in comments. We mapped taxonomies of other related work to our work
to establish which systems have been analyzed, which kinds of comments are frequently
analyzed, and which categories from these works are available in our taxonomy in Table 5.
Several categories from their taxonomy mapped to multiple information types in our taxon-
omy. We highlighted such categories with the symbol (M) in Mapping to our taxonomy in
Table 5. In the next paragraphs, we discuss all these related works.

Ying et al. categorize a specific type of comment, namely Eclipse task comments, to see
what information they contain. They categorize them on the basis of the various uses of the
task comments, such as for communication, or to bookmark current and future tasks (Ying
et al., 2005). Similarly Hata (Hata et al., 2019) categorized the links found in comments.
Padioleau et al. use multiple dimensions to analyze comments and propose comment cat-
egories based on the meaning of a comment. They use W questions such as “What is in
a comment?”, “Who can benefit?”, “Where is the comment located?”, and “When was the
comment written?” Our aim is to support developers to find important and different kinds of
information from the class comment so we choose one specific dimension, namely “What
is in a comment?”, and classify Pharo class comments accordingly (Padioleau et al., 2009).
Haouari et al. categorized the comments based on their position relative to code, comment
type, style, and their quality.(Haouari et al., 2011) Similiar to their work, we also catego-
rized based on the content of comments. They proposed three subcategories of comment
type, namely Explanation comments, Working comments, and Other. However, due to the
abstract nature of these categories, especially Explanation comments, most of our categories
can fit into it. We categorized the comments based on what specific types of information
developers explain.

Steidl et al. assess the quality of comments in Java and C/C++ programs based on differ-
ent comment categories. The proposed seven high-level categories based on the position and
syntax of the comments, e.g., inline comments, block comments etc. (Steidl et al., 2013). We
focus particularly on class comments, which map to their Header comments. Additionally
in Pharo, four other categories (task comments, copyright comments, member comments,
and section comments) from their work are available inside Pharo class comments, but are
not annotated with any specific tags, and do not have a fixed position as in Java and C/C++.
Farooq et al. compared comments of popular programming languages based on the types of
symbols used to denote them, parsing rule, recursivity, and usage of the comments for var-
ious purposes such as documentation, and debugging (Farooq et al., 2015). In our case, the
position of Pharo class comments is fixed and does not contain commented code as Pharo
class comments are presented in a separate window; therefore, the categorization based on
position does not apply to this case.

Pascarella et al. propose a taxonomy of code comments for Java projects (Pascarella and
Bacchelli, 2017). Five of our categories, namely Intent, Examples, Warnings, License, and
References to external documentations, are close to their taxonomy categories Rationale,
Usage, Notice, License, Pointer respectively. However, our categorization is specific to class
comments. We found a number of cases in which the categories from their work did not fit

What do class comments tell us in Pharo Smalltalk? 39

Pharo comments, such as Ownership, Commented code, Directive, Formatter, Discarded,
and Exception, due to unavailability of such information in the Pharo class comments. We
found other, different types of information that developers write in Pharo class comments,
such as warnings, observations, and contracts, that are not reported in their work. Zhang et
al. constructed a Python comment taxonomy based on the work of Pascarella et al. (Zhang
et al., 2018).

Shinayam et al. identified the information embedded in local comments, as shown in
Table 5 (Shinyama et al., 2018). Mapping to their work showed that Pharo class comments
contain low-level information also in addition to high-level information. Based on the map-
ping analysis, several categories from related work did not map to our taxonomy. As the
scope of comments we analyzed is different from other works e.g., Pascarella et al. and
Zhang et al., it is still possible that other kinds of Pharo comments (method comments or
inline comments) contain other missing information types. Additionally, all of the previous
classifications have been performed on external projects of a language rather than internal
core libraries such as String, or Collection. We categorized the comments from Pharo inter-
nal (core) and external projects to identify if developers have different commenting practices
in internal and external projects. In future work, we plan to investigate the class comments
of other popular languages and compare them to Pharo commenting practices.

7.3 Template evolution and adherence

Nurvitadhi studies the impact of class comments and method comments on program com-
prehension in Java, and creates a template for class comments in Java (Nurvitadhi et al.,
2003). He suggests to include the purpose of the class, what the class does, and the collabo-
ration between classes. The Pharo class comment template covers similar aspects with CRC
style for the class comment. However, whether developers follow these aspects or not in
their comments is unstudied. We therefore evaluate the adherence of the template with de-
veloper commenting practices. Jiang et al. study the source code comments in PostgreSQL.
Their focus is on the function comments i.e., comments before the declaration of the func-
tion named header comments and comments within function body and trailing the functions
named non-header comments. They observe that there is an initial fluctuation in the ratio of
header and non-header comments due to the introduction of a new commenting style, but
they do not investigate further about the commenting style (Jiang and Hassan, 2006). Marin
investigates the psychological factors that drive developers to comment (Marin, 2005). The
study concludes that developers use different comment styles in their code depending on the
programming language they have used earlier. We also partially confirm this result as we
find Java style block comments present in Pharo class comments. To best of our knowledge,
we are first to conduct a study to evaluate the commenting style of developers, and measure
the extent of their adherence to the standard guidelines.

8 Conclusion

Comments play an important role in program comprehension and maintenance tasks. Class
comments can provide a high-level understanding of the program, and help one to under-
stand a complex program. Class comments in Pharo serve as the primary source of documen-
tation, and thus contain high-level design details as well as low-level implementation details

40 Pooja Rani et al.

and API documentation. We analyze the class comments in Pharo, characterizing the evolu-
tion of commenting practices, and identifying the information types from class comments.
We find that developers are motivated to comment new classes, as well as old classes to
maintain the overall code-comment ratio. They also update comments of old classes. While
50% of the comment changes were related to code changes, the remaining changes were
about clarifying and formatting the class details.

Our analysis shows that developers embed various essential details to make their com-
ments more understandable, and provide important details to the reader. We identify 23 types
of information in comments, ranging from high-level design details to the implementation-
specific details, showing Pharo class comments to be a rich source of information about
a class. However, we find many frequent information types are only implicitly present in
the text. Identifying such information types from comments automatically is therefore not
straightforward due to the unavailability of standard headers or annotations, the inconsis-
tent use of headers, and the lack of a fixed order of writing these information types. We
consequently highlight the need for the community to find ways to standardize headers, and
build tools to access and highlight information within the comments to assist developers in
various tasks.

We observe that developers write information types mentioned by the comment tem-
plate more frequently than other information types, but there are some other information
types not included in the template that are frequently adopted in practice by developers. We
find that developers follow different conventions to write such information types, thus result-
ing in different kinds of information being scattered throughout the comments in different
styles. However, in the majority of comments, developers do follow the writing style of the
template in writing such information types. We therefore suggest to include the additional
information categories most used by developers in the comment template. We propose to
introduce structured style guidelines to maintain the quality of class comments. Tools could
be designed to automatically assess the quality of comments and their adherence to conven-
tions and standards, with the possibility to adapt them according to the current developer
practices.

In summary, this study highlights, from a quantitative and qualitative point of view,
important patterns concerning class commenting practices of developers. A direct impli-
cation of our work is that, in different programming languages, using the contemporary
code comment template is not always ideal when actual practices strongly diverge from it.
This suggests a need to standardize the guidelines for formatting and writing headers of the
new emerging information types, with the goal of better supporting developer information
needs, and ensuring a consistent and higher quality of class comments. For future work, we
are interested in conducting further studies on other programming languages, to investigate
potentially different commenting practices, program comprehension, and code documenta-
tion patterns. Additionally, we want to use the identified patterns concerning the implicit
information types for building efficient tools to extract the information automatically and
(possibly) present the specific information to the developers in a more exhaustive form (e.g.,
by auto-completion of missing comment types). More in general, we envision, for future
work, further research effort into (i) developing tools able to determine the extent to which
the code comment template is diverging from current practice; (ii) automatically identifying
the information type from the comments, and (iii) automatically assessing code comment
quality in terms of both content, style, and consistency with the source code; (iv) the auto-
mate generation of code comments on top of templates designed from languages guidelines
and developers practices.

What do class comments tell us in Pharo Smalltalk? 41

Acknowledgements We gratefully acknowledge the financial support of the Swiss National Science Foun-
dation for the project “Agile Software Assistance” (SNSF project No. 200020-181973, Feb 1, 2019 - Apr 30,
2022).

Conflict of interest

Oscar Nierstrasz has received funding from Swiss National Science Foundation (SNSF
project No. 200020-181973, Feb 1, 2019 - Apr 30, 2022).

References

Bavota G, Canfora G, Di Penta M, Oliveto R, Panichella S (2013) An empirical investiga-
tion on documentation usage patterns in maintenance tasks. In: 2013 IEEE International
Conference on Software Maintenance, IEEE, pp 210–219

Cadwell P (2008) Readability: examining its usefulness in the field of controlled language.
Localisation Focus p 34

Cioch FA, Palazzolo M, Lohrer S (1996) A Documentation Suite for Maintenance Pro-
grammers. In: Proceedings of the 1996 International Conference on Software Mainte-
nance, IEEE Computer Society, Washington, DC, USA, ICSM ’96, pp 286–295, URL
http://dl.acm.org/citation.cfm?id=645544.655870

Cline A (2015) Testing thread. In: Agile Development in the Real World, Springer, pp 221–
252

Cornelissen B, Zaidman A, van Deursen A, Moonen L, Koschke R (2009) A Systematic
Survey of Program Comprehension through Dynamic Analysis. IEEE Transactions on
Software Engineering 35(5):684–702, DOI 10.1109/TSE.2009.28, URL http://swerl.
tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2008-033.pdf

Dias M, Peck MM, Ducasse S, Arévalo G (2014) Fuel: a fast general purpose object graph
serializer. Software: Practice and Experience 44(4):433–453, DOI 10.1002/spe.2136,
URL http://dx.doi.org/10.1002/spe.2136

DuBay WH (2004) The principles of readability. Online Submission
Ducasse S, Gîrba T, Nierstrasz O (2005) Moose: an Agile Reengineering Environment.

In: Proceedings of ESEC/FSE 2005, pp 99–102, DOI 10.1145/1081706.1081723, URL
http://scg.unibe.ch/archive/papers/Duca05fMooseDemo.pdf, tool demo

Farooq M, Khan S, Abid K, Ahmad F, Naeem M, Shafiq3a M, Abid A (2015) Taxonomy and
Design Considerations for Comments in Programming Languages: A quality perspective.
Journal of Quality and Technology Management 10(2)

Fluri B, Wursch M, Gall HC (2007) Do code and comments co-evolve? On the Relation
between Source Code and Comment Changes. In: Reverse Engineering, 2007. WCRE
2007. 14th Working Conference on, IEEE, pp 70–79

Fluri B, Würsch M, Giger E, Gall HC (2009) Analyzing the co-evolution of comments and
source code. Software Quality Journal 17(4):367–394

Goldberg A, Robson D (1983) Smalltalk 80: the Language and its Implementation. Addison
Wesley, Reading, Mass., URL http://stephane.ducasse.free.fr/FreeBooks/
BlueBook/Bluebook.pdf

Google Style Guidelines (verified on 10 April 2020) Google style guidelines. URL https:
//google.github.io/styleguide/, https://google.github.io/styleguide/

http://dl.acm.org/citation.cfm?id=645544.655870
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2008-033.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2008-033.pdf
http://dx.doi.org/10.1002/spe.2136
http://scg.unibe.ch/archive/papers/Duca05fMooseDemo.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
https://google.github.io/styleguide/
https://google.github.io/styleguide/

42 Pooja Rani et al.

Guzzi A, Bacchelli A, Lanza M, Pinzger M, Deursen Av (2013) Communication in open
source software development mailing lists. In: Proceedings of the 10th Working Confer-
ence on Mining Software Repositories, IEEE Press, pp 277–286

Haiduc S, Aponte J, Moreno L, Marcus A (2010) On the Use of Automated Text Summa-
rization Techniques for Summarizing Source Code. In: 2010 17th Working Conference
on Reverse Engineering, IEEE, pp 35–44

Haouari D, Sahraoui H, Langlais P (2011) How Good is Your Comment? A Study of Com-
ments in Java programs. In: 2011 International Symposium on Empirical Software Engi-
neering and Measurement, IEEE, pp 137–146

Hartzman CS, Austin CF (1993) Maintenance productivity: Observations based on an ex-
perience in a large system environment. In: Proceedings of the 1993 conference of the
Centre for Advanced Studies on Collaborative research: software engineering-Volume 1,
IBM Press, pp 138–170

Hata H, Treude C, Kula RG, Ishio T (2019) 9.6 million links in source code comments:
Purpose, evolution, and decay. In: Proceedings of the 41st International Conference on
Software Engineering, IEEE Press, pp 1211–1221

Hayes JH, Zhao L (2005) Maintainability prediction: a regression analysis of measures
of evolving systems. In: 21st IEEE International Conference on Software Maintenance
(ICSM’05), IEEE, pp 601–604

Ibrahim WM, Bettenburg N, Adams B, Hassan AE (2012) On the relationship between com-
ment update practices and software bugs. Journal of Systems and Software 85(10):2293–
2304

Jiang ZM, Hassan AE (2006) Examining the Evolution of Code Comments in PostgreSQL.
In: Proceedings of the 2006 international workshop on Mining software repositories,
ACM, pp 179–180

Khamis N, Witte R, Rilling J (2010) Automatic quality assessment of source code com-
ments: the javadocminer. In: International Conference on Application of Natural Lan-
guage to Information Systems, Springer, pp 68–79

LaToza TD, Myers BA (2010) Hard-to-Answer Questions about Code. In: Evaluation
and Usability of Programming Languages and Tools, ACM, New York, NY, USA,
PLATEAU ’10, pp 8:1–8:6, DOI 10.1145/1937117.1937125, URL http://doi.acm.
org/10.1145/1937117.1937125

Lidwell W, Holden K, Butler J (2010) Universal Principles of Design. Rockport Publishers
Liu Y, Sun X, Duan Y (2015) Analyzing program readability based on wordnet. In: Pro-

ceedings of the 19th International Conference on Evaluation and Assessment in Software
Engineering, ACM, p 27

Maalej W, Tiarks R, Roehm T, Koschke R (2014) On the Comprehension of
Program Comprehension. ACM TOSEM 23(4):31:1–31:37, DOI 10.1145/2622669,
URL http://mobis.informatik.uni-hamburg.de/wp-content/uploads/2014/
06/TOSEM-Maalej-Comprehension-PrePrint2.pdf

Marin DP (2005) What Motivates Programmers to Comment? Technical Report No
UCB/EECS-2005018, University of California at Berkeley

Moose (verified on 10 Jan 2020) Moose. URL https://moosetechnology.org/,
https://moosetechnology.org/

Moreno L, Aponte J, Sridhara G, Marcus A, Pollock LL, Vijay-Shanker K (2013) Automatic
generation of natural language summaries for java classes. In: IEEE 21st International
Conference on Program Comprehension, ICPC 2013, San Francisco, CA, USA, 20-21
May, 2013, pp 23–32

http://doi.acm.org/10.1145/1937117.1937125
http://doi.acm.org/10.1145/1937117.1937125
http://mobis.informatik.uni-hamburg.de/wp-content/uploads/2014/06/TOSEM-Maalej-Comprehension-PrePrint2.pdf
http://mobis.informatik.uni-hamburg.de/wp-content/uploads/2014/06/TOSEM-Maalej-Comprehension-PrePrint2.pdf
https://moosetechnology.org/

What do class comments tell us in Pharo Smalltalk? 43

Nielebock S, Krolikowski D, Krüger J, Leich T, Ortmeier F (2019) Commenting source
code: is it worth it for small programming tasks? Empirical Software Engineering
24(3):1418–1457

Nurvitadhi E, Leung WW, Cook C (2003) Do class comments aid Java program understand-
ing? In: 33rd Annual Frontiers in Education, 2003. FIE 2003., IEEE, vol 1, pp T3C–T3C

Oracle Documentation guidelines (verified on 10 Sep 2020) Oracle documenta-
tion guidelines. URL https://www.oracle.com/technical-resources/
articles/java/javadoc-tool.html, https://www.oracle.com/technical-
resources/articles/java/javadoc-tool.html

Padioleau Y, Tan L, Zhou Y (2009) Listening to programmers Taxonomies and character-
istics of comments in operating system code. In: Proceedings of the 31st International
Conference on Software Engineering, IEEE Computer Society, pp 331–341

Pascarella L, Bacchelli A (2017) Classifying Code Comments in Java Open-source Soft-
ware Systems. In: Proceedings of the 14th International Conference on Mining Soft-
ware Repositories, IEEE Press, MSR ’17, pp 227–237, DOI 10.1109/MSR.2017.63, URL
https://doi.org/10.1109/MSR.2017.63

Petrosyan G, Robillard MP, De Mori R (2015) Discovering Information Explaining API
Types Using Text Classification. In: Proceedings of the 37th International Conference
on Software Engineering - Volume 1, IEEE Press, Piscataway, NJ, USA, ICSE ’15, pp
869–879

Pharo (verified on 10 Jan 2020) Pharo consortium. URL http://consortium.pharo.
org, http://consortium.pharo.org

Ratol IK, Robillard MP (2017) Detecting fragile comments. In: Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software Engineering, IEEE Press,
pp 112–122

Robbes R, Pollet D, Lanza M (2010) Replaying ide interactions to evaluate and improve
change prediction approaches. In: Proceedings of the 7th IEEE Working Conference on
Mining Software Repositories, IEEE, MSR ’10, pp 161–170, DOI 10.1109/MSR.2010.
5463278

RPackage (verified on 20 Nov 2019) Replication package. URL https://figshare.com/
s/6d039cebc6c2609de11a, https://figshare.com/s/6d039cebc6c2609de11a

Scalabrino S, Linares-Vasquez M, Poshyvanyk D, Oliveto R (2016) Improving Code Read-
ability Models with Textual Features. In: 2016 IEEE 24th International Conference on
Program Comprehension (ICPC), IEEE, pp 1–10

Schreck D, Dallmeier V, Zimmermann T (2007) How documentation evolves over time.
In: IWPSE ’07: Ninth international workshop on Principles of software evolution, ACM,
New York, NY, USA, pp 4–10, DOI 10.1145/1294948.1294952

Shinyama Y, Arahori Y, Gondow K (2018) Analyzing code comments to boost program
comprehension. In: 2018 25th Asia-Pacific Software Engineering Conference (APSEC),
IEEE, pp 325–334

Siegmund J, Schumann J (2015) Confounding parameters on program comprehension: a
literature survey. Empirical Software Engineering 20(4):1159–1192

Soetens QD, Robbes R, Demeyer S (2017) Changes as first-class citizens: A research
perspective on modern software tooling. ACM Comput Surv 50(2):18:1–18:38, DOI
10.1145/3038926, URL http://doi.acm.org/10.1145/3038926

de Souza SCB, Anquetil N, de Oliveira KM (2005) A study of the documentation essential
to software maintenance. In: Proceedings of the 23rd annual international conference on
Design of communication: documenting & designing for pervasive information, ACM,
New York, NY, USA, SIGDOC ’05, pp 68–75, DOI 10.1145/1085313.1085331

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://doi.org/10.1109/MSR.2017.63
http://consortium.pharo.org
http://consortium.pharo.org
https://figshare.com/s/6d039cebc6c2609de11a
https://figshare.com/s/6d039cebc6c2609de11a
http://doi.acm.org/10.1145/3038926

44 Pooja Rani et al.

de Souza SCB, Anquetil N, de Oliveira KM (2006) Which documentation for software main-
tenance? Journal of the Brazilian Computer Society 12(3):31–44

Steidl D, Hummel B, Juergens E (2013) Quality analysis of source code comments. In:
Program Comprehension (ICPC), 2013 IEEE 21st International Conference on, IEEE, pp
83–92

Stylos J, Myers BA, Yang Z (2009) Jadeite: Improving API Documentation Using Usage
Information. In: CHI ’09 Extended Abstracts on Human Factors in Computing Systems,
ACM, New York, NY, USA, CHI EA ’09, pp 4429–4434, DOI 10.1145/1520340.1520678

Tan L (2015) Code Comment Analysis for Improving Software Quality. In: The Art and
Science of Analyzing Software Data, Elsevier, pp 493–517

Tan L, Yuan D, Krishna G, Zhou Y (2007a) /* icomment: Bugs or bad comments?*. In:
Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles,
pp 145–158

Tan L, Yuan D, Zhou Y (2007b) Hotcomments: How to Make Program Comments More
Useful? In: HotOS

Tenny T (1985) Procedures And Comments vs. The Banker’s Algorithm. ACM SIGCSE
Bulletin 17(3):44–53

Tenny T (1988) Program readability: Procedures versus comments. IEEE Transactions on
Software Engineering 14(9):1271–1279

Tomassetti F, Torchiano M (2014) An empirical assessment of polyglot-ism in github. In:
Proceedings of the 18th International Conference on Evaluation and Assessment in Soft-
ware Engineering, pp 1–4

Triola M (2006) Elementary Statistics. Addison-Wesley
Vargha A, Delaney HD (2000) A Critique and Improvement of the CL Com-

mon Language Effect Size Statistics of McGraw and Wong. Journal of Educa-
tional and Behavioral Statistics 25(2):101–132, DOI 10.3102/10769986025002101,
URL http://dx.doi.org/10.3102/10769986025002101, http://dx.doi.org/
10.3102/10769986025002101

Wen F, Nagy C, Bavota G, Lanza M (2019) A Large-Scale Empirical Study on Code-
Comment Inconsistencies. In: Proceedings of the 27th International Conference on Pro-
gram Comprehension, IEEE Press, pp 53–64

Woodfield SN, Dunsmore HE, Shen VY (1981) The Effect of Modularization and Com-
ments on Program Comprehension. In: Proceedings of the 5th international conference
on Software engineering, IEEE Press, pp 215–223

Ying ATT, Wright JL, Abrams S (2005) Source Code That Talks: An Exploration of
Eclipse Task Comments and Their Implication to Repository Mining. SIGSOFT Softw
Eng Notes 30(4):1–5, DOI 10.1145/1082983.1083152, URL http://doi.acm.org/
10.1145/1082983.1083152

Zaidman A, Van Rompaey B, Demeyer S, van Deursen A (2008) Mining software repos-
itories to study co-evolution of production and test code. In: Software Testing, Ver-
ification, and Validation, 2008 1st International Conference on, pp 220 –229, DOI
10.1109/ICST.2008.47

Zhang J, Xu L, Li Y (2018) Classifying Python Code Comments Based on Supervised
Learning. In: International Conference on Web Information Systems and Applications,
Springer, pp 39–47

Zhou Y, Gu R, Chen T, Huang Z, Panichella S, Gall H (2017) Analyzing APIs Documen-
tation and Code to Detect Directive Defects. In: Proceedings of the 39th International
Conference on Software Engineering, IEEE Press, pp 27–37

http://dx.doi.org/10.3102/10769986025002101
http://dx.doi.org/10.3102/10769986025002101
http://dx.doi.org/10.3102/10769986025002101
http://doi.acm.org/10.1145/1082983.1083152
http://doi.acm.org/10.1145/1082983.1083152

What do class comments tell us in Pharo Smalltalk? 45

A Template Models

Variable
 name: Identifier
 type: ProtoObject

0..*

0..* Collaborator

1 Intent

 className: Identifier
Class

self.listOfVariables -> notEmpty()
then
 self.name and self.type -> notEmpty()
end if
self.header = ‘Instance Variables’.

self.className -> notEmpty()
self.description.style =thirdPerson.

InstanceVariable ClassInstanceVariable

self.listOfVariables -> notEmpty()
then
 self.name and self.type -> notEmpty()
end if
self.header = ‘Class Instance Variables’.

Fig. 16: Writing style constraints formulated for Pharo 1 template

InstanceVariable
 name: Identifier
 type: Object
description: Text

0..* 1 Intent

description: Text

self.className -> notEmpty()
self.description.style = thirdPerson

self.listOfVariables -> notEmpty()
then
 self.name and self.type -> notEmpty()
end if
self.header = ‘Instance Variables’.

if self.description -> notEmpty()
then
 self.description.style = thirdPerson
end if

 className: Identifier

Class

Fig. 17: Writing style constraints formulated for Pharo 2 and Pharo 3 template

46 Pooja Rani et al.

Class

Intent
className: Identifier
description: Text

1
InstanceVariable

 name: Identifier
 type: Object

0..*

KeyMessage

name: Identifier 0..*

1

InstantiationProcess

description:
CodeOrText

0..*

Collaborator

name: Identifier
interactions: Interaction

Example
description:
CodeOrText

0..*
ImplementationPoint

description:
CodeOrText

0..*

Responsibility
0..* description: Text

self.className -> notEmpty()
if self.description -> notEmpty()
then
 self.description.lines = 1.
 self.description.style = firstPersonPronouns.
 self.description.startsWith = ‘I am’.
end if

self.listOfInstanceVariables -> notEmpty()
then
 self.name and self.type -> notEmpty()
end if
self.header = ‘instance Variable’.

self.interactions.lines = 1.
self.description.style = firstPersonPronouns.
self.description.useSimilarWordsTo = ‘I interact’.

self.description = CodeOrText.

self.description = CodeOrText.
self.header = ‘Implementation Points’ or
‘Internal Represenation’

self.description = CodeOrText.

self.listOfKeyMessages -> notEmpty()
self.header = ‘Public API’ or ‘Key Messages’.

if self.description -> notEmpty()
then
 self.description.lines <= 3.
 self.description.style = firstPersonPronouns.
 self.description.useSimilarWordsTo = {‘I do’, ‘I
offer’).
end if

Fig. 18: Writing style constraints formulated for Pharo 4 template

Class

Intent

description: Text1
InstanceVariable

 name: Identifier
 type: Object

0..*

KeyMessage
name: Identifier 0..*

1InstantiationProcess
description: CodeOrText 0..*

Collaborator
name: Identifier
interactions: Interaction

Example
description: CodeOrText

0..*ImplementationPoint
description: CodeOrText 0..*

if self.description -> notEmpty()
then
 self.description.lines = 1.
 self.description.style = firstPersonPronouns.
 self.description.useSimilarWordsTo = ‘I represent’.
end if

self.listOfInstanceVariables -> notEmpty()
then
 self.name and self.type -> notEmpty()
end if
self.header = ‘instance Variable’.

if self.description -> notEmpty()
then
 self.description.lines <= 3.
 self.description.style = firstPersonPronouns.
 self.description.useSimilarWordsTo = {‘I do’, ‘I know’).
end if

self.interactions.lines = 1.
self.description.style = firstPersonPronouns.
self.description.useSimilarWordsTo = ‘I interact’.

Responsibility
0..* description: Text

self.description = CodeOrText.
self.description = CodeOrText.
self.header = ‘Implementation Points’ or ‘Internal Represenation’

self.listOfKeyMessages -> notEmpty()
self.header = ‘Public API’ or ‘Key Messages’.

self.description = CodeOrText.

Fig. 19: Writing style constraints formulated for Pharo 5,6,7 template

	Introduction
	Background
	RQ1: Comment trend analysis
	RQ2: Comment information types
	 RQ3: Adherence of commenting practices to the template
	Threats to validity
	Related Work
	Conclusion
	Template Models

