
Speculative Analysis for Quality Assessment of
Code Comments

Pooja Rani
Software Composition Group, University of Bern

Bern, Switzerland

� scg.unibe.ch/staff

Abstract—Previous studies have shown that high-quality code
comments assist developers in program comprehension and main-
tenance tasks. However, the semi-structured nature of comments,
unclear conventions for writing good comments, and the lack of
quality assessment tools for all aspects of comments make their
evaluation and maintenance a non-trivial problem. To achieve
high-quality comments, we need a deeper understanding of code
comment characteristics and the practices developers follow.
In this thesis, we approach the problem of assessing comment
quality from three different perspectives: what developers ask
about commenting practices, what they write in comments, and
how researchers support them in assessing comment quality.

Our preliminary findings show that developers embed various
kinds of information in class comments across programming
languages. Still, they face problems in locating relevant guidelines
to write consistent and informative comments, verifying the
adherence of their comments to the guidelines, and evaluating
the overall state of comment quality. To help developers and
researchers in building comment quality assessment tools, we
provide: (i) an empirically validated taxonomy of comment
convention-related questions from various community forums,
(ii) an empirically validated taxonomy of comment information
types from various programming languages, (iii) a language-
independent approach to automatically identify the information
types, and (iv) a comment quality taxonomy prepared from a
systematic literature review.

Index Terms—code comments, mining developer sources, de-
veloper information needs, comment quality assessment

I. INTRODUCTION

Well-documented code facilitates various software devel-

opment and maintenance activities [1], [2]. Several studies

show that high quality code comments help developers in

program comprehension [3], suitable API selection [4], and

bug detection [5]. However, comments are written using nat-

ural language sentences and their syntax and semantics are

neither enforced by a programming language nor checked by

the compiler. As a result, developers are free to use numerous

means and conventions to write comments [6], and embed

various types of information in them [7], thus making the

quality evaluation of comments more complicated.

To guide developers in writing consistent and informative

comments, programming language communities such as those

for Java and Python, and large organizations such as Google

and Oracle provide coding style guidelines. However, these

guidelines only marginally cover aspects of commenting code

such as content, style, and syntax. Furthermore, the availability

of several guidelines for a language makes developers unsure

about which comment conventions to use, which syntax to

follow, and which type of information to write for what kinds

of comments. Therefore, developers ask questions on mailing

lists, and community platforms such as Stack Overflow (SO)

and Quora to address these issues [8], [9]. Analyzing such

developer concerns is valuable to understand their needs, and

to identify challenges related to commenting practices. Simi-

larly analyzing their actual commenting practices is essential

to understand the information they embed in comments and

to ensure the quality of that information.

Previous studies have characterized developer commenting

practices in OOP languages by classifying comments based on

the information that comments contain [7], [10]–[12]. Given

the variety of comment types (class, method, or inline), not

all comment types describe the source code at same levels

of abstraction, therefore, the quality assessment tools need

to be tailored accordingly. For example, class comments in

Java should present high-level information about a class,

whereas method comments should present implementation-

level details [13]. These commenting conventions vary across

programming languages. For instance, in comparison to Java,

class comments in Smalltalk are expected to contain high-level

design details and low-level implementation details. Given

the increasing usage of multi-language software systems [14]

and persistent concerns about maintaining high documentation

quality, it is critical to understand what developers write in

a particular comment type, and to build tools to extract and

check the embedded information across languages. This can

also help to ensure the extent to which a comment type adheres

to a coding style guideline from the content aspect.

Even when a comment adheres to its coding style guidelines

from all aspects such as content, syntax, and style, it is still

possible that the comment is incomplete or inconsistent with

the code, and thus lacks the desired high quality. There-

fore, several other quality attributes that can affect comment

quality need to be considered in the overall assessment of

comments. Researchers have proposed numerous comment

quality evaluation models based on a number of metrics [6],

[15] and classification approaches [11]. However, a unifying

comment quality taxonomy to express the purposes for which

researchers evaluate comments, and which quality attributes

they consider important and integrate frequently in their com-

ment quality models or tools is still missing.

In summary, a good understanding of the existing practices

299

2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

978-1-6654-1219-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE-Companion52605.2021.00132

20
21

 IE
EE

/A
C

M
 4

3r
d

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 C
om

pa
ni

on
 P

ro
ce

ed
in

gs
 (I

C
SE

-C
om

pa
ni

on
) |

 9
78

-1
-6

65
4-

12
19

-3
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SE
-C

om
pa

ni
on

52
60

5.
20

21
.0

01
32

Authorized licensed use limited to: University Bern. Downloaded on May 24,2021 at 17:50:31 UTC from IEEE Xplore. Restrictions apply.

that developers follow, and of comment quality models re-

searchers suggest is necessary to bridge the gap between the

notion of quality and its concrete implementation. To gain

this required understanding, we analyze code comments from

various perspectives, of developers in terms of what they

ask and what they write in comments, and of researchers in

terms of what they suggest. In this exploration of semantics

embedded in the comments, we use speculative analysis, by

analogy with speculative execution (e.g., branch prediction).

Previous studies have also shown how speculative analysis

can be used to develop tools that inform developers early and

precisely about potential consequences of their actions [16],

[17]. In our case, we are interested in supporting developers

to ensure comment quality while writing or using comments

for various development tasks.

The goal of this thesis is to investigate practices in code

comment writing and evaluation in a stepwise manner to

ultimately improve comment quality assessment techniques.

I state my thesis as follows:

Understanding the specfication of high-quality comments to build
effective assessement tools requires a multi-perspective view of the
comments. The view can be approached by analyzing (1) developer
concerns about comments, (2) their commenting practices within
IDEs, and (3) required quality attributes for their comments.

This dissertation will focus on three main questions:

• What do developers ask about commenting practices?
Answering this can help in (i) identifying the key chal-

lenges developers face with current conventions and tools,

and (ii) adapting their approaches accordingly.

• What information do developers write in comments?
Understanding this can support the development of tools

and approaches (i) to identify important information types

and comment clones automatically, and (ii) to verify

the adherence of comments to style guidelines from the

content aspect.

• How do researchers support comment quality assess-
ment? Answering this question can help in (i) identifying

the limitation of the existing tools and techniques, and (ii)

adapting the tools according to the proposed comment

quality taxonomy.

II. THESIS VISION

This section presents the studies conducted to answer the

main questions, as shown in Figure 1. The following sub-

sections briefly describe the motivation, methodology, and

preliminary findings of each study.

A. What do developers ask about commenting practices?

Previous studies have leveraged various online platforms to

gain a deep understanding of developers needs and challenges

[8], [9], [18]. We investigated the popular Q&A forums,

SO and Quora, and Apache project-specific mailing lists to

understand their commenting practices.

Methodology. To answer the question, we mined and pre-

processed 11 931 posts extracted using 14 relevant tags on

SO. The tags are selected using a hybrid approach combining

Speculative Analysis of Code Comments

What do developers ask about
commenting practices?

SRQ: What types of questions and
problems developers discuss

regarding comment conventions on
community platforms?

Relevant topics Challenges Tool

What information do developers write
in the comments?

SRQ: What types of information is
present in the class comments? To

what extent do information types vary
across programming languages?

Class Comment Type

Model (CCTM)

Machine learning

How do researchers support
assessing comment quality?

SRQ: Which quality attributes and
metrics are commonly used to
assess code comment quality?

Metrics
Quality

attributes

Relevant
Literature

Implications for researchers and developers to improve comment quality

Fig. 1. Overview of my dissertation with all research questions, their
methodology, and results.

a heuristics-based approach used by Yang et al. [9] and a

keyword-based approach used by Aghajani et al. successfully

in their work [18]. We used a semi-automated approach based

on Latent Dirichlet Allocation (LDA) [19], an advanced and

popular topic modeling technique, to identify topics from

the selected posts. To uncover developer concerns in detail

(mainly which type of questions they ask and about what

tools and techniques), we manually analyzed a statistically

significant sample set of posts from SO, Quora and mailing

lists, and formulated a taxonomy of these concerns. The tax-

onomy offers an overview of the leading questions discussing

commenting conventions in a more formal, structured, and

possibly exhaustive way.

Findings. Our study results highlight that: (i) Developers

ask questions about best practices to write comments (15%

of the questions) and generate comments automatically using

various tools and technologies. (ii) Among 14 topics iden-

tified by LDA, we found five irrelevant topics due to the

generality and commonality of the tags (e.g., “convention,”,

“commenting”). (iii) From our manual analysis, we found

that developers are interested in embedding various kinds of

information, such as code examples and media (e.g., images)

in their code comments but lack clear guidelines to write them.

(iv) Developers post questions about documentation tools on

SO, whereas no such questions are reported on Quora. In

mailing lists, we did not find enough developer discussions

about comment conventions.

Conclusion. This analysis shows that developers use various

community platforms to raise concerns about code comments.

Such concerns hint at the challenges developers face, and their

needs from the programming language communities, tools,

technologies, and researchers. Conveying clear guidelines to

write good comments, and building tools to verify the ad-

herence of comments to these guidelines indicate possible

directions to support developers.

B. What information do developers write in comments?

Source code comments consist of several comment types

(class comments, method comments, inline comments), but not

all comment types contain the same types of information. We

300

Authorized licensed use limited to: University Bern. Downloaded on May 24,2021 at 17:50:31 UTC from IEEE Xplore. Restrictions apply.

start our analysis by first focusing on class comments, which

play an important role in obtaining a high-level overview

of classes in object-oriented programming languages [20].

Class commenting practices however vary across programming

languages. For instance, a class comment in Java or Python

contains high-level overview details and uses annotations (e.g.,
@param,@return) to express specific types of information. In

contrast, class comments in Smalltalk contain detailed design

and implementation documentation, and they do not make use

of any annotation. We first investigated class comments in

Pharo (a modern Smalltalk environment), and identified the

types of information developers embed in them by studying the

research question RQ1: What types of information are present
in Pharo class comments? Then we measured the adherence

of Pharo class comments to the class comment guidelines.

To generalize our findings across languages, we extended

our analysis to other programming languages, namely Java

and Python. We systematically compared the commonalities

and differences among class commenting practices with the

research question RQ2: To what extent do information types
vary across programming languages? In order to automate

the identification of information types from class comments

across languages, we studied the research question RQ3: Can
machine learning be used to identify class comment types
according to our taxonomy automatically?

Methodology. To answer RQ1, we conducted a three-

iteration-based analysis on a statistically significant sample set

of 714 comments selected from internal and external projects

of Pharo. Three authors analyzed the content of comments

using open-card sorting and pair sorting to build and validate

the comment taxonomy. In the case of Python and Java class

comments, we used the initial comment taxonomy available

from previous works [7], [12], and analyzed and validated

the content using the closed-card sorting technique. Based on

the constructed taxonomy i.e., Class Comment Type Model

(CCTM) and labelled data from each language, we answered

RQ2. To automatically classify class comment types according

to CCTM for RQ3, we used an approach that leverages two

techniques namely Natural Language Processing (NLP) and

TF-IDF. We use the TF-IDF technique as a baseline due to

its successful adoption in recent work on classifying code

comments [21]. We transform a multi-label classification into a

set of single-label classification problems to balance one label

at a time and avoid over-fitting the categories. We adopt a

10-fold cross-validation strategy with a standard probabilistic

Naive Bayes classifier, the J48 tree model, and the Random

Forest model based on the recent work [7]. We evaluate RQ3

by measuring precision, recall, and F-measure of our approach

against the TF-IDF baseline approach.

Findings. Our results highlight that: (i) Developers express

different kinds of information (more than 15 information

types) in class comments ranging from the high-level overview

of the class to low-level implementation details across pro-

gramming languages. (ii) Class comments contain various

types of information but not all of these information types

are suggested by coding guidelines, and this behaviour is

observed across all the selected languages. In the case of

Pharo, the information types suggested by the guidelines were

observed more frequently than other information types. We

are in still in the process of verifying this observation in other

programming languages. (iii) The Random Forest algorithm

fed by the combination of NLP+TF-IDF features achieves

the best classification performance for the top six frequent

categories over the investigated languages with relatively high

precision (ranging from 78% to 92% for the selected lan-

guages), recall (ranging from 86% to 92%), and F-Measure

(ranging from 77% to 92%) where Pharo achieves less stable

results compared to Python and Java.

Conclusion. This analysis highlights the diverse types of

information developers embed in class comments regardless

of coding style guidelines about comments. Given the benefits

of retrieving these information types automatically for various

development tasks, it highlights the challenges in unifying

retrieval approaches across languages.

C. How do researchers support comment quality assessment?

Software quality is frequently represented as a contextual

concept. Therefore, it requires identification and quantification

of important characteristics of high-quality software as a first

step to measure it [22]. The main objective of our literature

review is: to identify the quality attributes that are used to

assess code comment quality and collect the metrics used to

measure these quality attributes. Additionally, we are inter-

ested in which tools/models have been proposed by researchers

to assess comment quality. To achieve these objectives, we

plan to conduct a systematic literature review (SLR) to answer

the following research questions. RQ1: What quality attributes
are used to evaluate the quality of code comments, and what
metrics are used to estimate the quality attributes? RQ2:

Which quality attributes and metrics do current assessment
tools support?

Methodology: We plan to conduct the SLR following the

guidelines of Kitchenham [23]. We separate the study steps

associated with the SLR-related phases planning, conducting

the review, and reporting. In the planning phase, we identify

the objectives of our SLR and specify the research questions.

We plan to review the proceedings of the past ten years i.e.,
2010-2020 from the relevant SE conferences and journals ac-

cording to the Computing Research and Education Association
of Australasia (CORE) ranking.1 We formulate the inclusion

and exclusion criteria. Based on these criteria, we plan to

systematically identify relevant studies.

Expected output. Insights from the SLR are expected to

provide a detailed view of the tools and techniques proposed

by researchers to assess the quality of comments. Based on

these insights, we plan to prepare a comment quality taxonomy

which can help researchers and developers in identifying

various quality attributes suitable for a comment type and

integrating the relevant measures in their tools as per their

requirements.

1CORE rankings portal, accessed August 18, 2020, http://www.core.edu.au/

301

Authorized licensed use limited to: University Bern. Downloaded on May 24,2021 at 17:50:31 UTC from IEEE Xplore. Restrictions apply.

III. PRELIMINARY AND EXPECTED CONTRIBUTIONS

From each study, we present empirical insights, approaches,

and tools to support developers and researchers in ensuring

high-quality comments.

• For the first question “What do developers ask about
commenting practices?”, we present: (i) an empirically

validated taxonomy of comment convention-related ques-

tions from various community forums, and (ii) a tool to

conduct a mining study on multiple sources or forums,

• For the second question “What information do developers
write in comments?”, we provide: (i) an overview of the

Pharo class commenting trends over seven major releases

till 2019, (ii) an empirically validated taxonomy, called

CCTM, characterizing the information types found in

class comments written by developers in three different

programming languages, and (iii) an automated approach

(available for research purposes) able to accurately clas-

sify class comments according to CCTM

• For the third question “How do researchers support
comment quality assessment?”, we expect to achieve:

(i) a comment quality taxonomy to identify relevant

quality attributes, and (ii) a review of existing tools and

techniques that assess the quality of code comments.

IV. PROPOSED TIMELINE

I am a third-year PhD student and will be entering the final

year of my PhD from January 2021. The expected timeline

for the projects:

• A first study (II-A) has been submitted to the journal-

first track at Transactions on Software Engineering and

Methodology, 2020 (TOSEM’20).

• The RQ1 in the second study (II-B) is currently undergo-

ing a minor revision in the journal-first track at Empirical

Software Engineering (EMSE’19) [24].

• Other research questions (RQ2 and RQ3) in the second

study (II-B) have been submitted to the Journal of Sys-

tems and Software (JSS’20).

• The third study (II-C) is currently planned to be submitted

to Transactions on Software Engineering (TSE’21).

V. RELATED WORK

Comment conventions (RQ1): Developers frequently use

various web resources to satisfy their information needs.

Recently, researchers have started leveraging these resources

such as version control systems [25], Q&A forums [8], [9], and

mailing lists [18]. In the context of software documentation,

Aghajani et al. studied documentation issues on SO, Github

and mailing lists [18] and formulated a taxonomy of these

issues. However, they have focused on the issues related

to project documentation, such as wikis, user manuals, and

code documentation, and do not focus specifically on the

issues of the convention of the code comments. Barua et
al. found questions concerning coding style and practice to

be amongst those most frequently appearing on SO [8], but

did not investigate it further. Our first question (II-A) focuses

specifically on the problems related to commenting practices

developers discuss on SO, Quora, and mailing lists.

Identify information types from comments (RQ2): Code

comments contain valuable information to help developers in

various activities and tasks. Pascarella et al. identified the

information types from Java code comments and presented

a taxonomy [7]. Similarly, Zhang et al. identified information

types from Python code comments [12]. We focused specifi-

cally on class commenting practices and used their taxonomy

as an initial taxonomy to classify class comments. Compared

to the work of Pascarella et al. and Zhang et al. [7], [12],

we found several other types of information such as warnings,

observations, and recommendations developers embed in class

comments. To identify different kinds of information from

comments automatically, several studies have explored numer-

ous approaches based on heuristics or textual features [26],

[27]. In contrast to these previous approaches, we extracted

the natural language patterns (heuristics) automatically using

a tool, combined them with other textual features, and tested

our approach across languages.

Comments quality (RQ3): Apart from identifying in-

formation embedded in the comments, assessing comments

from other perspectives has gained a lot of attention from

researchers in the past years, for example, assessing comment

quality [11], [15], detecting inconsistency between code and

comments [28], [29], and examining co-evolution of code and

comments [30]. The main aim is to keep comments consistent

with the code and to maintain their high quality. Several recent

works have proposed tools and techniques to automatically

assess the comments using specific quality attributes and met-

rics [11], [15], [31]. However, a unifying model of comment

quality attributes and metrics that are considered important

for assessing comments is still missing. Previous literature

reviews have provided the quality models for the software

documentation [32], [33] but we focus specifically on the code

comment aspect.

VI. CONCLUSION

To improve the state of comment quality assessment tech-

niques, this thesis focuses on three main questions: what do

developers ask about commenting practices, what do they

write in comments, and how do researchers support assessment

of comments. Our work draws insights from both empirical

evidence mined from developer sources and research results

(SLR). Our preliminary findings show that developers embed

various kinds of information in comments. Still, they face

several problems in locating the specific comment guidelines,

verifying the adherence of their comments to the coding stan-

dards, and evaluating the overall state of the comment quality.

Our empirical evidence also shows that Pharo developers fol-

low commenting guidelines in writing class comments. These

insights of developer commenting practices across languages

can help researchers to improve comment quality assessment

tools, and to evaluate comment summarization and comment

generation approaches. We present initial approaches, tools,

302

Authorized licensed use limited to: University Bern. Downloaded on May 24,2021 at 17:50:31 UTC from IEEE Xplore. Restrictions apply.

and labelled dataset to facilitate the future comment analysis

work on other languages and environment.

My future work will concentrate on exploring which tasks

and activities require developers to search these information

types in comments and how developers find these information

types. Based on developer commenting practices, my objective

would be to improve my prototype tools and reduce the efforts

in assessing comment quality. I expect to finish the work for

my dissertation in 2021.

REFERENCES

[1] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in Proceedings of
the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information, ser. SIGDOC ’05.
New York, NY, USA: ACM, 2005, pp. 68–75.

[2] F. A. Cioch, M. Palazzolo, and S. Lohrer, “A documentation suite for
maintenance programmers,” in Proceedings of the 1996 International
Conference on Software Maintenance, ser. ICSM ’96. Washington,
DC, USA: IEEE Computer Society, 1996, pp. 286–295. [Online].
Available: http://dl.acm.org/citation.cfm?id=645544.655870

[3] U. Dekel and J. D. Herbsleb, “Reading the documentation of invoked
API functions in program comprehension,” in 2009 IEEE 17th Inter-
national Conference on Program Comprehension. IEEE, 2009, pp.
168–177.

[4] C. McMillan, D. Poshyvanyk, and M. Grechanik, “Recommending
source code examples via API call usages and documentation,” in
Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering, 2010, pp. 21–25.

[5] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* iComment: Bugs or bad
comments?*/,” in Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, 2007, pp. 145–158.

[6] Y. Padioleau, L. Tan, and Y. Zhou, “Listening to programmers —
taxonomies and characteristics of comments in operating system code,”
in Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 2009, pp. 331–341.

[7] L. Pascarella and A. Bacchelli, “Classifying code comments in
Java open-source software systems,” in Proceedings of the 14th
International Conference on Mining Software Repositories, ser.
MSR ’17. IEEE Press, 2017, pp. 227–237. [Online]. Available:
https://doi.org/10.1109/MSR.2017.63

[8] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? An analysis of topics and trends in Stack Overflow,”
Empirical Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.
[Online]. Available: https://doi.org/10.1007/s10664-012-9231-y

[9] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What
security questions do developers ask? A large-scale study of Stack
Overflow posts,” Journal of Computer Science and Technology,
vol. 31, no. 5, pp. 910–924, 2016. [Online]. Available: https:
//doi.org/10.1007/s11390-016-1672-0

[10] D. Haouari, H. Sahraoui, and P. Langlais, “How good is your comment?
A study of comments in Java programs,” in 2011 International Sympo-
sium on Empirical Software Engineering and Measurement. IEEE,
2011, pp. 137–146.

[11] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,” in Program Comprehension (ICPC), 2013 IEEE 21st
International Conference on. IEEE, 2013, pp. 83–92.

[12] J. Zhang, L. Xu, and Y. Li, “Classifying Python code comments based
on supervised learning,” in International Conference on Web Information
Systems and Applications. Springer, 2018, pp. 39–47.

[13] E. Nurvitadhi, W. W. Leung, and C. Cook, “Do class comments aid Java
program understanding?” in 33rd Annual Frontiers in Education, 2003.
FIE 2003., vol. 1. IEEE, 2003, pp. T3C–T3C.

[14] F. Tomassetti and M. Torchiano, “An empirical assessment of polyglot-
ism in GitHub,” in Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering, 2014, pp. 1–4.

[15] N. Khamis, R. Witte, and J. Rilling, “Automatic quality assessment of
source code comments: the JavadocMiner,” in International Conference
on Application of Natural Language to Information Systems. Springer,
2010, pp. 68–79.

[16] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Speculative analysis:
Exploring future development states of software,” in Proceedings of the
FSE/SDP Workshop on Future of Software Engineering Research, ser.
FoSER ’10. New York, NY, USA: ACM, 2010, pp. 59–64. [Online].
Available: http://doi.acm.org/10.1145/1882362.1882375

[17] K. Muşlu, Y. Brun, M. D. Ernst, and D. Notkin, “Making offline
analyses continuous,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, 2013, pp. 323–333.

[18] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation
issues unveiled,” in Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019, J. M. Atlee, T. Bultan, and J. Whittle,
Eds. IEEE / ACM, 2019, pp. 1199–1210. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00122

[19] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[20] A. Cline, “Testing thread,” in Agile Development in the Real World.
Springer, 2015, pp. 221–252.

[21] V. Misra, J. S. K. Reddy, and S. Chimalakonda, “Is there a correlation
between code comments and issues?: an exploratory study,” in SAC
’20: The 35th ACM/SIGAPP Symposium on Applied Computing, online
event, [Brno, Czech Republic], March 30 - April 3, 2020, 2020, pp.
110–117. [Online]. Available: https://doi.org/10.1145/3341105.3374009

[22] J. Bansiya and C. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on Software Engineering,
vol. 28, no. 1, pp. 4–17, Jan. 2002.

[23] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” 2007.

[24] P. Rani, S. Panichella, M. Leuenberger, M. Ghafari, and O. Nierstrasz,
“What do class comments tell us? An investigation of comment evolution
and practices in Pharo,” arXiv preprint arXiv:2005.11583, 2020, to
appear in Empirical Software Engineering.

[25] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use
of topic models when mining software repositories,” Empirical Softw.
Engg., vol. 21, no. 5, pp. 1843–1919, oct 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9402-8

[26] N. Dragan, M. L. Collard, and J. I. Maletic, “Automatic identification
of class stereotypes,” in Proceedings of the 2010 IEEE International
Conference on Software Maintenance, ser. ICSM ’10. USA:
IEEE Computer Society, 2010, p. 110. [Online]. Available: https:
//doi.org/10.1109/ICSM.2010.5609703

[27] Y. Shinyama, Y. Arahori, and K. Gondow, “Analyzing code comments
to boost program comprehension,” in 2018 25th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 2018, pp. 325–334.

[28] I. K. Ratol and M. P. Robillard, “Detecting fragile comments,” in Pro-
ceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering. IEEE Press, 2017, pp. 112–122.

[29] F. Wen, C. Nagy, G. Bavota, and M. Lanza, “A large-scale empirical
study on code-comment inconsistencies,” in Proceedings of the 27th
International Conference on Program Comprehension. IEEE Press,
2019, pp. 53–64.

[30] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Analyzing the co-
evolution of comments and source code,” Software Quality Journal,
vol. 17, no. 4, pp. 367–394, 2009.

[31] H. Yu, B. Li, P. Wang, D. Jia, and Y. Wang, “Source code comments
quality assessment method based on aggregation of classification algo-
rithms,” J. Comput. Appl., vol. 36, no. 12, pp. 3448–3453, 2016.

[32] W. Ding, P. Liang, A. Tang, and H. Van Vliet, “Knowledge-based
approaches in software documentation: A systematic literature review,”
Information and Software Technology, vol. 56, no. 6, pp. 545–567, 2014.

[33] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and
G. Ruhe, “Cost, benefits and quality of software development documen-
tation: A systematic mapping,” Journal of Systems and Software, vol. 99,
pp. 175–198, 2015.

303

Authorized licensed use limited to: University Bern. Downloaded on May 24,2021 at 17:50:31 UTC from IEEE Xplore. Restrictions apply.

