
Software Analysis using Natural Language Queries

Pooja Rani
Software Composition Group

University of Bern, Switzerland
http://scg.unibe.ch/staff/Pooja-Rani

Abstract

Understanding a software system consumes a sub-
stantial portion of a developer’s effort. To support
software comprehension and evolution, reverse
engineering aims at creating a high-level represen-
tation of an existing software system. With state-
of-the-art technology, abstract models of software
systems are created by reverse engineering tools
and analyzed using software analysis tools. De-
spite the rich functionalities offered by analysis
tools, a novice user may find them difficult to use
due to an unfamiliar tool environment and query
language. In this paper, we propose an approach
that allows the developer to formulate a query in
a natural language in order to overcome these ob-
stacles.

1 Introduction
Software systems continuously evolve and present multi-
ple challenges for performing analysis. To deal with the
expanding size and complexity of software systems, devel-
opers employ reverse engineering methods and tools to ex-
tract information [MJS+00].

With the adoption of model-driven engineering, mod-
els have become a potential center of software develop-
ment due to their usage in numerous reengineering tasks
like project analysis, software maintenance and software
system understanding [RS04]. Models represent software
artifacts, and the source code is one of the important soft-
ware system artifacts spanning various phases starting from
development to maintenance. Different kinds of analysis
like data flow analysis, call graph analysis or code met-
ric analysis are performed to understand the source code.

Copyright © by the paper’s authors. Copying permitted for private and
academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and Tools for
Software Evolution SATToSE 2018 (sattose.org).
04-06 July 2018, Athens, Greece.

Developers ask various questions regarding function def-
initions or annotations used in classes in order to under-
stand the code. Studies have revealed common search
patterns regarding questions that developers ask such as
“Where is this method called?” or “Which methods call
the method named searchForThreat in the abc pack-
age?” [SMDV06, SCH98].

There are numerous tools available to perform such
analyses [EKRW02, FBTG02]. One of them, implemented
in Smalltalk, is Moose [DGLD05]. Moose is a soft-
ware and data analysis platform designed to be extensi-
ble, exploratory and scalable, and it provides the pos-
sibility of performing hybrid analysis. It uses a meta-
model named FAMIX (FAMOOS Information Exchange
Model). FAMIX is a programming language (PL) indepen-
dent meta-model used to represent object-oriented source
code [TDD00]. A developer can use it to analyze the
source code of different programming languages. In or-
der to analyze source code in Moose, the developer needs
to be familiar with the meta-model and the query lan-
guage. This is a common problem for a number of analysis
tools [EKRW02, FBTG02].

Consider a query the developer wants to ask while an-
alyzing the model: “Which classes are deprecated?”. In
order to get the list of deprecated classes, the developer
needs to turn this natural language (NL) question into the
tool’s query language. In Moose, queries are formulated in
Smalltalk. The Moose query for selecting the classes that
are deprecated is as follows:

self allModelClasses select:
[:each | each isAnnotatedWith:

'Deprecated']

To effectively use the tool’s abilities, a developer needs
to be aware of the query language of the tool and the meta-
model structure, e.g., if the meta-model contains any class
or method property related to annotations. If the tool sup-
ports “annotated” as a property, the developer can translate
the question to the query language and execute it to get
a list of all annotated classes. An experienced developer
can easily formulate this query, but a novice developer may

1

lack the knowledge to turn the question into a query.
To overcome the difficulty of writing code in an un-

known query language, developers search the web for
code snippets, asking the question in a natural language
and modifying the answer to the desired form of the
tool [BDWK10]. Since these tools offer many features,
they have a steep learning curve. Learning a new query lan-
guage and supported queries of a tool is a time-consuming
process and sometime the efforts required to learn the tool
may be too high for the perceived benefits. Asking ques-
tions in a natural language is an easier way to overcome
these obstacles.

The emergence of software assistants and the need to
search beyond the web has led to an interest in natural lan-
guage question answering systems. The user does not need
to know the underlying formal language and can input a
query in the NL. The prior example of the Moose query for
deprecated classes illustrates the developer’s query and its
code representation in Smalltalk. We aim to present the de-
veloper with sample queries and also provide an interface
to write new NL question, execute the corresponding query,
and present the result.

There are various challenges involved in this project:
(i) establish a way to search an NL question in the tool,
(ii) present sample questions of software analysis scenar-
ios, (iii) automatically translate a developer’s NL ques-
tion to the query language of the tool, (iv) for auto-
matic translation process, prepare a dataset for Smalltalk
analysis domain, and (v) support the developer if she
uses different words to search for software entities than
those actually in use e.g., to find a function named
searchForThreat, the developer guesses words like
findDanger or detectRisk.

In this paper, we propose an idea to help developer to
interact with software analysis tools without learning query
language of the tool and reduce complexity to perform an
analysis. We plan to develop a plugin for Moose where a
developer can leverage the user interface provided by the
tool with a feature to input her query in a natural language
instead of a tool’s query language. We propose to construct
a corpus of common software analysis questions. We plan
to automatically translate NL questions to the query lan-
guage of the tool, execute the translated query, and present
the results to the developer. In the following section, we
describe several approaches used in the past to solve the
problem of translation of NL queries to the query language
of the tool. We discuss the available choices of transla-
tion techniques and propose an appropriate approach for
this project.

2 Background
The general problem of translating natural language spec-
ifications into executable code has been around for more
than fifty years now [Bob64]. There exist several

works that tried to translate NL queries to query lan-
guages [LJK13, RGMF15, WGRG10]. The query language
of the tool can be a database query language or PL. Recent
advances in this area include the successful translation of
natural language commands to database queries [LJK13].
The problem of translation increases when the target lan-
guage is a general-purpose PL due to extensive syntax and
expressiveness of the language.

We describe several approaches. Some of the ap-
proaches are based on the syntax structure of NL queries,
like ASTs matching, some consider semantic of the lan-
guage. Here, we analyze different approaches and deter-
mine which approach is suitable for our scenario.

2.1 Syntax based approaches

Syntax-based approaches try to syntactically match words
in the natural language query to method or class param-
eters of the programming language. Using NLP tok-
enization and Part-Of-Speech (POS) tagging, a NL query
can be divided into tokens and a tag can be assigned to
the token. The tagged token can be mapped to code.
Thus the NL query token “classes” can be mapped to
“allModelclasses” of the target code due to the di-
rect matching of the tag to an entity of the language, but it
would fail to map a similar NL query presented like “all
classes that should no longer be used” due to the limited
tagset, and lack of information about the construction of
different phrases.

Either we define tags for all possible syntax elements
of the language or we can use syntactic structure informa-
tion to gather more information about the NL query. An-
alyzing the syntactic structure of queries can give useful
insight. Syntactic parsing is used to assign the syntactic
structure. Syntactic parsing based code-generation models
model code at the level of the parse tree or abstract syntax
tree (AST) and can map to code on the basis of tree match-
ing algorithms. However, these techniques fail to generate
correct code for semantically equivalent NL queries due to
similar words like “no longer used” and “deprecated”.

2.2 Semantic based approaches

Semantic-based approaches analyze an NL sentence from
the point of view of its meaningful representation and the
context in which the sentences or words are used. Se-
mantic parsing transforms an NL sentence into a machine-
interpretable meaning representation. It is inherently a
more complicated task than syntactic parsing, since it re-
quires the understanding of the meaning of words and find-
ing relations among them. To understand the contextual
similarity of words in a sentence, word embedding is used.
Word embedding has proved to be a powerful approach
to represent word relations. It embeds words in a high-
dimensional vector space so that words that appear close
in the source text are close in the final vector space. The

2

adoption of word embedding for our project enables, for
example, similar vector representations of the words “no
longer used” and “deprecated” implying a close semantic
relationship.

In addition to these semantic relationships between
words, the structure of a sentence also plays an important
role. The NL queries “Which deprecated methods are the
client classes using?” and “Which client classes are us-
ing the deprecated methods?” are semantically different
queries on a sentence level, composed of the same words
in a different order. The use of word embedding might not
provide a correct result in this case. So, the structure and
sequence of input queries need to be considered to translate
to the code correctly. The output code structure of the PL
diverges from the input structure of the NL query and tar-
get code must be structured and well-formed due to the PL
constraints. These constraints necessitate the use of train-
ing models to analyze the sequence of words and formalize
a mapping between sequence of words in the NL query to
the sequence of words in the PL.

2.3 Sequence based approaches

To analyze the sequence and structure of a sentence, se-
quence based models are used. The n-gram is the most
widely used sequence-based model to capture dependen-
cies in sequences. The n-gram model assumes that words
are generated sequentially, left-to-right and that the nth

word can be predicted using the previous n-1 words. The
consequence of capturing a short context is that the n-gram
model cannot handle long-range dependencies.

Sequence-based code models have been superseded by
deep recurrent neural network (RNN) models to outper-
form n-grams, and have proven effective to exploit the
sequential structure on both the input and output side of
query [LGH+16]. RNNs can model variable length of the
text, including very long sentences, and can preserve the
order of words. This approach achieves the state-of-the-art
results on several semantic parsing tasks. But training a
data-hungry neural model requires a large dataset and this
is one of the significant challenges of our project. Datasets
used in preceding neural-model training experiments are
available for Python but not for Smalltalk. We plan to con-
nect to various industrial and research communities that are
using Moose to gather a dataset.

Recently, Ling et al. have proposed a novel neural ar-
chitecture for code generation of high-level languages like
Python and Java [LGH+16]. Other approaches based on
neural networks have experimented further for generating
general purpose PL code [YN17], [LLBR13]. Yin has in-
corporated the knowledge of the grammar into the archi-
tecture design to achieve better performance on code trans-
lation task and we found this approach suitable for our
project [YN17]. It allows the strong underlying syntax of
the PL to be captured. In the following section, we describe

our plan to handle challenges mentioned for our project and
about the various components of the neural model selected
for our approach.

3 Approach
To present the capabilities of tools we have collected NL
questions of software maintenance tasks [dAM08],
software testing tasks [Koc16] and development
tasks [SMDV06]. We have analyzed numerous case
studies about the analysis tool usage in the industry [G1̂7].
These case studies helped us to gain insight into software
analysis problems that are important to the user. On the
basis of common developer questions and analysis of case
studies, we plan to prepare a corpus of sample questions
of common software analysis scenarios. Sample questions
can be categorized according to the type of information
a question is intended to extract e.g., properties of the
class, inter-class dependencies, intra-class dependencies,
inheritance, string search. The developer would not be
restricted to use these predefined questions. We propose
a user interface to input an NL question in the tool. We
will translate the NL question to Moose’s query language
i.e.,Smalltalk and execute translated code on the model (re-
fer Figure 1). The result after execution will be presented
back to the user for further analysis.

 Natural Language Query Interface Models

Neural-network model

Translated to Smalltalk code Execute code

Train model

Collected
dataset

Input dataset

Meta-modelInput Natural Language Query

Build model

Software
artifacts

Figure 1: Software analysis in Moose using NLP

We have discussed various approaches to translate an
NL query to Smalltalk code. Analysing available results
from these approaches and challenges of our project, we
concluded that we should use a neural network-based deep
learning RNN technique. We plan to collect the data for our
project domain from the various sources, prepare a dataset
in the form of a pair of the NL query description and its
target code snippet, and train the model (refer Figure 1).

We leverage the NLP technique suggested by Yin et
al. to generate the AST of the NL query [YN17]. Once
we obtain the syntax of the NL query, we can use deter-
ministic generation tools to convert the AST into surface
code [YN17]. We use a neural network-based encoder-
decoder framework to generate the AST. The encoder com-
putes a context-sensitive embedding of each word of an
NL description using bidirectional long short-term mem-

3

ory (LSTM) network and creates vector representations of
the NL query. The decoder uses generated vector represen-
tations that are fed to RNN to model the sequential gener-
ation process of an AST. The underlying syntax of the PL
is encoded in the grammar model a priori. Thus the model
is aware of the target PL grammar. Theoretically, a suffi-
ciently large encoder-decoder model should be able to per-
form the machine translation perfectly. However, to encode
all words and their dependencies in the arbitrary-length
sentences, the vector should have enormous length. Such
a model would require massive computational resources to
train and to use. This problem can be solved with the atten-
tion mechanism; the decoder can use information from an
arbitrary part of the encoded input sequence [BCB14].

Training a neural network model is the most impor-
tant phase and directly related to the accuracy of the code-
generation for the NL query. Preparing such a large dataset
for the model is one of the significant challenges for our
domain. We plan to conduct various studies and seek
help from Smalltalk community to gather data similar to
the datasets mentioned by Yin [YN17]. Considering the
fact that the code has to be a well-defined program in
the target syntax, we plan to use a hybrid approach of a
syntactic-based and semantic-based neural network model.
We are curious whether a neural network based approach
can be used to generate executable and functionally coher-
ent source code for Smalltalk.

Besides this translation, we will use heuristic informa-
tion of the meta-model to enrich our query information.
This will increases the accuracy of searches. In order to
evaluate the effectiveness of the semantic analysis, we will
analyze various metrics available for comparing the accu-
racy of semantic translations like BLEU [PRWZ02] and
MEANT [Lo17]. As we are preparing set of common anal-
ysis queries and their corresponding queries in Moose, we
will also use these queries to measure our translation re-
sults.

4 Related Work

Supporting developers to understand a software system has
been a top priority task in software development. Wursch
et al. described a system that is similar to our approach but
while they have used tools from ontology engineering, we
are proposing to use NLP techniques [WGRG10]. Recent
NLP research is now increasingly focusing on the use of
new deep learning methods. There have been attempts to
design semantic parsers and syntactic parsers using deep
learning methods to translate NL query to query language
of the tool [YHPC17, LLBR13, YN17, LGH+16]. We
want to leverage these techniques and propose to use them
for generating code of Smalltalk from NL queries, so a
novice developer can analyze a model easily.

5 Conclusions
Software analysis tools offer diverse features for analyz-
ing software artifacts but also present multiple challenges.
These tools demand a user to learn their query language
to analyze a model which can be a burden for novice users.
We outline an idea of a possible analysis workflow that will
ovecome these obstacles. In this paper, we propose a plugin
for Moose that will allow a user to input a natural language
query and present the result. We will prepare a corpus of
questions that are important for the developers and catego-
rized them according to the type of information a question
is intended to extract. We want to translate these questions
to Smalltalk automatically but simultaneously we do not
want to restrict developers to a set of predefined queries.
We plan to explore the neural network-based approach to
solve the mentioned challenges.

Acknowledgements

We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Ag-
ile Software Analysis” (SNSF project No. 200020-162352,
Jan 1, 2016 - Dec. 30, 2018).

References
[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and

Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473, 2014.

[BDWK10] Joel Brandt, Mira Dontcheva, Marcos
Weskamp, and Scott R. Klemmer. Example-
centric programming: integrating web search
into the development environment. In Pro-
ceedings of the 28th international conference
on Human factors in computing systems, CHI
’10, pages 513–522, New York, NY, USA,
2010. ACM.

[Bob64] Daniel G. Bobrow. Natural language input for
a computer problem solving system. Techni-
cal report, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, 1964.

[dAM08] Brian de Alwis and Gail C. Murphy. Answer-
ing conceptual queries with Ferret. In Pro-
ceedings of the 30th International Conference
on Software Engineering (ICSE), pages 21–
30, New York, NY, USA, 2008. ACM.

[DGLD05] Stéphane Ducasse, Tudor Gîrba, Michele
Lanza, and Serge Demeyer. Moose: a col-
laborative and extensible reengineering envi-
ronment. In Tools for Software Maintenance

4

and Reengineering, RCOST / Software Tech-
nology Series, pages 55–71. Franco Angeli,
Milano, 2005.

[EKRW02] Jürgen Ebert, Bernt Kullbach, Volker Riedi-
ger, and Andreas Winter. GUPRO — generic
understanding of programs, an overview.
Fachberichte Informatik 7–2002, Universität
Koblenz-Landau, 2002.

[FBTG02] Rudolf Ferenc, Árpád Beszédes, Mikko
Tarkiainen, and Tibor Gyimóthy. Columbus-
reverse engineering tool and schema for c++.
In Software Maintenance, 2002. Proceedings.
International Conference on, pages 172–181.
IEEE, 2002.

[G1̂7] Tudor Gîrba. Humane assessment by exam-
ple. Technical report, feenk.com, 2017.

[Koc16] Pavneet Singh Kochhar. Mining testing ques-
tions on stack overflow. In Proceedings of the
5th International Workshop on Software Min-
ing, SoftwareMining 2016, pages 32–38, New
York, NY, USA, 2016. ACM.

[LGH+16] Wang Ling, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, Andrew Senior,
Fumin Wang, and Phil Blunsom. Latent pre-
dictor networks for code generation. arXiv
preprint arXiv:1603.06744, 2016.

[LJK13] Percy Liang, Michael I Jordan, and Dan
Klein. Learning dependency-based composi-
tional semantics. Computational Linguistics,
39(2):389–446, 2013.

[LLBR13] Tao Lei, Fan Long, Regina Barzilay, and Mar-
tin Rinard. From natural language specifica-
tions to program input parsers. In Proceed-
ings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume
1: Long Papers), volume 1, pages 1294–1303,
2013.

[Lo17] Chi-kiu Lo. Meant 2.0: Accurate semantic mt
evaluation for any output language. In Pro-
ceedings of the Second Conference on Ma-
chine Translation, pages 589–597, 2017.

[MJS+00] Hausi A. Müller, Jens H. Janhke, Dennis B.
Smith, Margaret-Anne Storey, Scott R. Tilley,
and Kenny Wong. Reverse engineering: A
roadmap. In A. Finkelstein, editor, The Future
of Software Engineering 2000. ACM Press,
2000.

[PRWZ02] Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. Bleu: A method for
automatic evaluation of machine translation.
In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics,
ACL ’02, pages 311–318, Stroudsburg, PA,
USA, 2002. Association for Computational
Linguistics.

[RGMF15] Mohammad Raza, Sumit Gulwani, and
Natasa Milic-Frayling. Compositional pro-
gram synthesis from natural language and ex-
amples. In Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence,
IJCAI’15, pages 792–800. AAAI Press, 2015.

[RS04] Spencer Rugaber and Kurt Stirewalt. Model-
driven reverse engineering. IEEE software,
21(4):45–53, 2004.

[SCH98] Susan Elliott Sim, Charles LA Clarke, and
Richard C Holt. Archetypal source code
searches: A survey of software developers
and maintainers. In Program Comprehen-
sion, 1998. IWPC’98. Proceedings., 6th Inter-
national Workshop on, pages 180–187. IEEE,
1998.

[SMDV06] Jonathan Sillito, Gail C. Murphy, and Kris
De Volder. Questions programmers ask dur-
ing software evolution tasks. In Proceed-
ings of the 14th ACM SIGSOFT international
symposium on Foundations of software engi-
neering, SIGSOFT ’06/FSE-14, pages 23–34,
New York, NY, USA, 2006. ACM.

[TDD00] Sander Tichelaar, Stéphane Ducasse, and
Serge Demeyer. FAMIX and XMI. In
Proceedings WCRE 2000 Workshop on Ex-
change Formats, pages 296–296, Los Alami-
tos CA, November 2000. IEEE Computer So-
ciety Press.

[WGRG10] Michael Würsch, Giacomo Ghezzi, Gerald
Reif, and Harald C Gall. Supporting devel-
opers with natural language queries. In Pro-
ceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume
1, pages 165–174. ACM, 2010.

[YHPC17] Tom Young, Devamanyu Hazarika, Soujanya
Poria, and Erik Cambria. Recent trends in
deep learning based natural language process-
ing. arXiv preprint arXiv:1708.02709, 2017.

[YN17] Pengcheng Yin and Graham Neubig. A syn-
tactic neural model for general-purpose code
generation. arXiv preprint arXiv:1704.01696,
2017.

5

