
Noname manuscript No.
(will be inserted by the editor)

On Refining the SZZ Algorithm with Bug Discussion Data

Pooja Rani · Fernando Petrulio · Alberto
Bacchelli ·

Received: date / Accepted: date

Abstract Researchers testing hypotheses related to factors leading to low-quality software
often rely on historical data, specifically on details regarding when defects were introduced
into a codebase of interest. The prevailing techniques to determine the introduction of de-
fects revolve around variants of the SZZ algorithm. This algorithm leverages information on
the lines modified during a bug-fixing commit and finds when these lines were last modified,
thereby identifying bug-introducing commits.

Problem: Despite several improvements and variants, SZZ struggles with accuracy,
especially in cases of unrelated modifications or that touch files not involved in the intro-
duction of the bug in the version control systems (aka tangled commit and ghost commits).

Goal: Our research investigates whether and how incorporating content retrieved from
bug discussions can address these issues by identifying the related and external files and
thus improve the efficacy of the SZZ algorithm.

Method: To conduct our investigation, we take advantage of the links manually inserted
by Mozilla developers in bug reports to signal which commits inserted bugs. Thus, we pre-
pared the dataset, RoTEB, comprised of 12,472 bug reports. We first manually inspect a
sample of 369 bug reports related to these bug-fixing or bug-introducing commits and inves-
tigate whether the files mentioned in these reports could be useful for SZZ. After we found
evidence that the mentioned files are relevant, we augment SZZ with this information, using
different strategies, and evaluate the resulting approach against multiple SZZ variations.

Results: We define a taxonomy outlining the rationale behind developers’ references to
diverse files in their discussions. We observe that bug discussions often mention files rele-
vant to enhancing the SZZ algorithm’s efficacy. Then, we verify that integrating these file
references augments the precision of SZZ in pinpointing bug-introducing commits. Yet, it
does not markedly influence recall. These results deepen our comprehension of the useful-
ness of bug discussions for SZZ. Future work can leverage our dataset and explore other
techniques to further address the problem of tangled commits and ghost commits.
Data & material: https://zenodo.org/records/11484723

Pooja Rani, Fernando Petrulio, Alberto Bacchelli
Department of Informatics, University of Zurich, Zurich, Switzerland
https://www.ifi.uzh.ch/en/zest/team.html
E-mail: rani@ifi.uzh.ch, fpetrulio@ifi.uzh.ch, bacchelli@ifi.uzh.ch

https://zenodo.org/records/11484723
https://www.ifi.uzh.ch/en/zest/team.html

2 Pooja Rani et al.

Keywords Software Quality · Pull Request · Empirical Research · Taxonomy · SZZ
Algorithm · Bug-introducing commits · Mozilla

1 Introduction

Software engineering researchers conduct empirical studies to understand the cause and
impact of poor software quality [1, 2, 3, 4]. Particularly insightful in this context is knowing
which specific code changes led to the introduction of bugs (henceforth, bug-introducing
changes). For example, researchers have used this information to understand the effect of
ownership [1] and technical debt [2] on software quality, to study the relationship between
code naturalness and riskiness [3], and to investigate which changes can introduce bugs [5].

Information regarding which changes introduced bugs must typically be inferred. Meth-
ods to do so are generally based on an analysis of the changes that rectify the bug (bug-
fixing changes), a detail that is more commonly accessible. The SZZ algorithm, proposed
by Sliwersky, Zimmermann, and Zeller [6], stands out as one of the foundational and most
widespread methods. This algorithm uses VCS (version control system) data to identify
bug-introducing commits from a given bug-fixing commit. As illustrated in Figure 1, the
identification process involves two primary steps. Initially, SZZ pinpoints bug-fixing com-
mits, often by searching commit messages for keywords associated to bugs, like fix, bug,
or the bug-id. Subsequently, for each file addressed in these fixing commits, the algorithm
focuses on the lines that are changed or deleted. By tracing these lines through the VCS
history, SZZ marks the most recent commit that altered them as bug-introducing commits.

The SZZ algorithm operates under several assumptions. For example, SZZ posits that
all changes in the bug-fixing commit point to bug-introducing commits. However, the exis-
tence and frequency of tangled commits [7], where many unrelated files are altered within
a single commit, challenges this assumption’s validity. Furthermore, SZZ presumes that
bug-introducing commits are fixed by modifying the same files that caused the bug. Yet,
numerous studies have refuted this notion, demonstrating the frequent presence of ghost
commits [8] and inability of SZZ heuristics to handle them. In these instances, the bug-
introducing commit does not overlap with any file from the bug-fixing commit [9, 10, 11].
Such discrepancies can arise, for example, when the fix involves modifying dependent, re-
lated, or external files. We scoped our study to the files present in the repository that cause
intrinsic bugs [9].

To address inaccuracies and reduce the noise in SZZ, researchers have proposed SZZ
variants, such as AG-SZZ [12], L-SZZ [13], and enhancements which include additional
data sources, such as commit messages [14], bug reports, change log messages [15], and
commits referenced in Pull Requests (PRs) [16] to better identify relevant bug-fixing and
bug-introducing commits.

Despite these enhancements, using bug report discussions for enhancing SZZ’s capa-
bilities and accuracy is still largely unexplored. Yet, developers can mention related and
external files in bug report discussions [17] Figure 2 shows an example where two develop-
ers discuss relevant files to bug fixes, e.g., Debugger.cpp, Front.js in [Bug:1691941]. It
seems reasonable to hypothesize that leveraging these references could enhance the perfor-
mance of SZZ in identifying true bug-introducing commits. For example, SZZ identifies the
modified files in bug-fixing commits (in a hypothetical change history) and traces the recent
edits to reach bug-introducing commits as shown in Figure 2. Among many modified files in
bug-fixing commit (C5), we can keep the relevant file Debugger.cpp as developer discussed
it in the bug report, and we can remove the files that are not discussed, e.g., Parser.cpp,

https://bugzilla.mozilla.org/show_bug.cgi?id=1691941

Remodeling SZZ 3

thus addressing the problem of Tangled commit C5. Additionally, we can consider other
discussed files such as Front.js, environment.js as these can be related files that might
not be modified in the bug-fixing commit but can help reach the bug-introducing commit C3.
We challenge this hypothesis by investigating whether and to what extent the files mentioned
in bug discussions can enhance the recall and precision of the SZZ algorithm in correctly
identifying bug-introducing commits.

C2 C4C1 C5

- Debugger.cpp:12
- Parser.cpp:86
- EnvironmentObject

Change
History

C3

Cx commit

File modification link

Bug-introducing Bug-fixing

File fixing link

Fig. 1: Normal workflow of SZZ to identify bug-introducing commit(s) from a bug-fixing
commit (File names taken from Example: [Bug:1691941])

To conduct our research, we require a dataset where bug-introducing commits are accu-
rately linked to their corresponding bug-fixing commits, and the fixes are initiated and dis-
cussed in bug reports. Although most established software projects typically link bug-fixing
commits to bug reports, as previously mentioned, the specific origin of a bug is rarely doc-
umented. However, Mozilla represents a notable exception. Since 2019, Mozilla developers
have been manually identifying and documenting the specific issue reports (which may be

Cx commit

File modification link

Bug-introducing

Bug-fixing Missing file

Bug discussion

Debugger.cpp

environment.js

Front.js

C2 C4C1 C5

- Debugger.cpp:12
- Parser.cpp:86
- EnvironmentObject
- Front.js
- environment.js

Change
History

C3

- Debugger.cpp
- Front.js
- environment.js

Fig. 2: Proposed workflow of SZZ with an hypothetical change history of identifying bug-
introducing commit(s) from a bug-fixing commit on a Bug (Example: [Bug:1691941])

https://bugzilla.mozilla.org/show_bug.cgi?id=1691941
https://bugzilla.mozilla.org/show_bug.cgi?id=1691941

4 Pooja Rani et al.

regard bugs, but also the implementation of new features and improvements) responsible for
the bugs they address, thus connecting bug-fixing commits directly to the bug-introducing
ones. This practice allows us to create a dataset that have the characteristics we need for
our investigation. Furthermore, Mozilla’s ecosystem offers several advantageous features
for a detailed case study. It uses Bugzilla, an openly accessible issue-tracking system, and
BugBug [18], a tool designed to extract essential metadata about issue reports. Additionally,
Mozilla employs a broad range of programming languages and develop project of various
sizes and domains. Therefore, for our study we have chosen Mozilla as our subject and have
compiled a dataset of 12,472 bug reports from its repositories. This selection allows us to
explore a comprehensive set of data points, enhancing the relevance and applicability of
our findings. In the next step, we conducted a manual analysis of a statistically significant
sample of 369 bug discussions from Mozilla. Our goal was to understand the reasons why
source code files are mentioned within these discussions and to assess their utility in refining
SZZ algorithms. Our findings confirmed the potential in using this additional information
to enhance SZZ. We also developed several heuristics to pinpoint files involved in either
bug-introducing or bug-fixing commits. These file references in bug discussions allow us
to leverage file references to address specific issues for SZZ, namely tangled commits (by
excluding non-relevant file references from bug-fixing commits) and ghost commits (by in-
corporating additional relevant references into bug-fixing commits), as shown in Figure 2
via an example.

Our results show that including the files mentioned in the bug discussion enhances the
effectiveness of SZZ in identifying true bug-introducing commits. However, we found the
approach ineffective in handling the problem of ghost commits.

The main contributions of our study include:

– A taxonomy of the reasons why developers mention files in bug reports, which are in-
cluded in bug-fixing commits, bug-introducing commits, both, or neither them, derived
from a qualitative analysis of 369 bug report discussions;

– a novel variant of SZZ, FI-SZZ, that infers relevant files from the bug discussion and
uses them to improve the accuracy of identifying bug-introducing commits;

– an empirical evaluation of FI-SZZ showing its effectiveness in handling the problem of
tangled commits;

– An extended version of the dataset proposed by Petrulio et al. [11], named RoTEB (a
Repository of Tangled and ghost commits) updated with more recent bugs for a total of
12,472 bugs [19].

2 Background and Related Work

We introduce SZZ, its implementation details, heuristics, and limitations, particularly in the
context of a multi-commit development model.

2.1 The SZZ Algorithm

In 2005, Śliwerski, Zimmermann, and Zeller, introduced an algorithm, now known as SZZ,
to identify commits introducing a bug in a software system [6]. The base version of this
algorithm (henceforth, B-SZZ) operates in two stages. Initially, from a pool of all commits,
the algorithm locates the commits that rectify a bug (designated as bug-fixing commit) em-
ploying various heuristics. These heuristics might involve scanning commit messages for

Remodeling SZZ 5

terms like fix and bug or identifiers such as bug-id or a bug’s title. These commits are then
associated with a bug from an issue tracking system (ITS). Presently, most ITS platforms,
including Bugzilla and GitHub, maintain links between a bug report and their corresponding
fixing commits. As such, in contemporary software projects, this link is readily accessible,
rendering the initial step superfluous.

The second phase of B-SZZ employs a diff tool on the bug-fixing commits (determined
in the initial phase) to pinpoint the modified line regions, or hunks, within these commits.
This tool outputs a list of hunks, highlighting the discrepancies between a file pre- and post-
modification. Subsequently, B-SZZ invokes annotate functions, such as git blame, on
these altered lines to discern the commits where these lines were most recently edited. These
commits are marked as bug-introducing. Given that a single commit can encompass multi-
ple modifications or hunks, which may have been adjusted in diverse preceding commits,
multiple bug-introducing candidate commits can emerge, as illustrated in the workflow of
SZZ’s second phase Figure 1. For a specified bug-fixing commit C5, SZZ recognizes C1, C2,
and C4 as bug-introducing commits, given that the files amended in commit C5 were most
recently altered in these commits. Here, commits C2 and C3 are genuine bug-introducing
commits, whereas C1 and C4 are false positives.

While B-SZZ sets the groundwork for detecting bug-introducing commits, it comes
with inherent limitations. For instance, it can yield noisy bug-introducing commits because
of tangled commits, or it can overlook bug-introducing commits due to ghost commits [7, 9].

2.2 SZZ variants

To improve on the accuracy of the B-SZZ algorithm, the scientific community has worked
on refining its approach. We describe some of the most popular variants:

1. AG-SZZ [12]: One of the earlier attempts to augment the original algorithm was by
Kim et al. [12], who devised AG-SZZ. This variant sidelines modifications that pertain
to comments or formatting within commits. Moreover, it discerns alterations in method
names and uses annotation graphs to filter style changes.

2. L-SZZ, R-SZZ [13], MA-SZZ [20]: Drawing inspiration from the principles of AG-
SZZ, Davies et al. [13] crafted L-SZZ and R-SZZ. These strategies filter the outcomes
of AG-SZZ and establish a one-to-one correlation between bug commits, meaning each
bug-fixing commit corresponds to a singular bug-introducing commit. Specifically, while
L-SZZ prioritizes the commit with the maximum lines of code alterations amongst bugin
candidates, R-SZZ opts for the most recent commit from the candidate pool.Similarly,
another variant named MA-SZZ filtered the meta-changes of AG-SZZ that are related
to merge operation, e.g., branch changes, merge changes, property changes.

3. Language-Specific Variations: A number of SZZ derivatives, such as RA-SZZ [21],
Open-SZZ [22] embed heuristics tailored for specific programming languages for im-
proving the base accuracy. RA-SZZ filters the refactoring operations (that do not change
the program behaviour). Open-SZZ is implemented on the basis of B-SZZ.

4. PyDriller: A practical embodiment of these refined principles is the PyDriller tool, con-
ceptualized by Spadini et al. [23]. Grounded in the tenets of AG-SZZ, this tool harnesses
the git-hyper-blame command to overlook meta changes [20] and refactoring mod-
ifications [24]. However, one of its limitations is the need for manual intervention to
define the changes to be disregarded within a specific file.

6 Pooja Rani et al.

2.3 Challenging Scenarios for SZZ

Various empirical studies [7, 17, 25, 26, 10, 8] reveal that the accuracy of SZZ diminishes
notably in two specific scenarios, i.e., with tangled commits and ghost commits. We depict
these two scenarios in Figure 3 and describe them in further detail.

Change
History

Debugger.cpp:12
Parser.cpp:86
EnvironmentObject

Tangling + Ghosting Workflow

C5C2 C4C1 C3

Cx commit

File modification link

Bug-introducing

Bug-fixing

Missing file

Unrelated files

Front.js

Fig. 3: Current workflow of SZZ with Tangled commit (C5) and Ghost commit (C3) for the
bug-introducing commit(s) from a bug-fixing commit

2.3.1 Tangled Commits

A commit is considered tangled when it addresses multiple objectives or functions, such as
implementing new features, fixing bugs, or refactoring [27]. Figure 3 displays the tangled
commit C5 where numerous unrelated files might be adjusted. This misleads SZZ to asso-
ciate this bug-fixing commit with commit C1, even if it is not a bug-introducing commit.
Indeed, a number of prior studies have highlighted that tangled commits pose challenges
for data analysis and classification algorithms, notably in identifying bug-fixing and bug-
introducing commits [7, 26, 17, 25]. Mills et al. [17] conducted a manual assessment of
2,311 bug-fixing changes spanning 15 projects, revealing that half of these commits were
tangled. Herbold et al. [25] examined 2,238 bugs across 28 projects to measure the preva-
lence of tangled commits: they found that only 38% of the modified lines within bug-fixing
commits were needed to fix a bug.

As identifying automatically whether a commit, or a set of commits (PR), addresses
multiple tasks (i.e., is tangled) is challenging, we assume PR to be tangled. As SZZ requires
at least one file to be shared between bug-fixing and bug-introducing commits to trace bug-
introducing commits, we check whether there is at least one common file modified in both
bug-introducing and bug-fixing commits. In such a case, we target detangling commits for
the bugs that share a file mentioned in bug discussion and modified in bug-fixing commits,
as we can keep the relevant files that are discussed in bug reports and remove the noisy files
from bug-fixing commits.

Remodeling SZZ 7

2.3.2 Ghost Commits

Recent studies have shown that bugs can have different origins [28], which means that some
bugs originate in the changes recorded in VCS (project repository) while other bugs are due
to the external changes that do not correspond to any alteration within the VCS, e.g., changes
in software dependencies like APIs [10, 9]. A bug is termed extrinsic when it arises from
changes that are not visible in the VCS and intrinsic when the changes are present in the
VCS [9, 10, 20]. A case in point from the Mozilla project is bug 1666140,1 which pertains
to updating the BigInts package of the WebAssembly Javascript Interface—an external
package not in the repository. These are known as extrinsic bugs. As the files causing or
fixing extrinsic bugs lie outside of the repository (VCS), their bug-fixing or bug-introducing
commits do not exist in VCS. If the changes causing the bugs are recorded in VCS, they
are known as intrinsic bugs. For some intrinsic bugs, the bug-fixing commits do not mod-
ify the files relevant to the bug, and in such cases, the heuristics of SZZ can not trace
bug-introducing commits—such bugs are defined as ghost commits [8]. Occasionally, ghost
commits manifest between interrelated components of the same software [20, 8, 9]. Essen-
tially, such a situation arises when the bug-fixing commit solely adds (e.g., a novel file added
to the project) or bug-introducing commit solely deletes lines, or when the files adjusted in
the bug-introducing commit differ from those in the bug-fixing commit. In these scenarios,
B-SZZ fails to trace the modifications. Ghost commits are predominant in commit-set envi-
ronments like GitHub and Mercurial. Notably, they account for 45% of bugs in Mozilla [11]
and stand as the primary reason for bug-introducing misidentification by SZZ [25, 8].

In our study, we address the challenge of identifying intrinsic ghost bug-introducing
commits—instances where bugs are introduced by changes to files in the repository, yet
these files are unmodified in the bug-fixing commit, thus rendering the bug-introducing
commit untraceable for SZZ. For instance, in Figure 3, Front.js is not modified in the
bug-fixing commit (C5) but is available in VCS and was modified in commit C3—thus C3
is defined as a ghost commit. We investigate whether incorporating files mentioned in bug
discussions into the list of potentially relevant files for the bug-fixing commits can address
the ghost commits issue and allow SZZ to identify the original bug-introducing commit(s).

2.4 Augmenting SZZ with Additional Information

Bludau and Pretschner [16] demonstrated the potential of supplemental non-VCS informa-
tion to enhance SZZ. They incorporated PR messages to associate bug-fixing commits with
bugs listed on the issue tracker, resulting in an approximately 18% increase in the overall
identification of bug-fixing commits. Although such advancements hold promise in address-
ing certain ghost commits, they do not address ghost commits in which the bug-fixing and
bug-introducing commit do not share any common file between them.

Within issue trackers, developers engage in discussions to comprehend and fix bugs
[17]. Earlier research [29, 30] suggests that bug report discussions often directly reference
specific code locations, such as code snippets, files, or class names, providing insights into
the potential bug’s location. It is plausible that information extracted from bug report dis-
cussions could alleviate issues associated with tangled commits (for instance, entities both
highlighted in the bug report and addressed by the bug-fixing might likely be initially faulty,
rather than components of a separate task) and ghost commits (e.g., entities mentioned in

1 https://bugzilla.mozilla.org/show_bug.cgi?id=1666140

https://bugzilla.mozilla.org/show_bug.cgi?id=1666140

8 Pooja Rani et al.

the bug report but untouched in the bug-fixing could pertain to bug-introducing commits
which modify those entities. We show an example in Figure 3. However, the feasibility of
supplementing SZZ with this data to mitigate its shortcomings and boost its accuracy re-
mains unexplored. In this study, we set to investigate whether and how bug discussions can
improve SZZ performance by adding files discussed in bug reports to the list of relevant files
to address the problem of ghost commits and by removing noisy files that are not discussed
to address the problem of tangled commits.

3 Study Design

3.1 Research Questions

Developers discuss bugs on issue trackers to understand and fix them [17]. Empirical evi-
dence shows that developers often mention files that may have caused the bug or those that
can assist in its resolution [29, 30]. Our initial goal to set the basis for our study is to compre-
hend the reason why source code files are mentioned in bug reports. This analysis expands
our understanding of (i) how developers utilize Issue Tracking Systems (ITS) to address and
discuss bugs and (ii) the different reasons developers mention files in bug reports. Access
to this knowledge can inform the creation of tools supporting various software engineering
tasks, such as bug localization, code review, and code documentation. In the context of this
study, we examine its potential relevance for the SZZ algorithm. Thus, our first question is:

RQ1: Why do developers discuss source code files in bug reports?

Developers often mention files in bug reports to aid other developers in understand-
ing or fixing the bugs. These mentioned files might be a part of the files modified in bug-
introducing commit(s) or bug-fixing commit(s), or not. Recognizing the files that truly be-
long to bug-introducing and bug-fixing commits can bolster the efficiency of the SZZ al-
gorithm. This is because the SZZ algorithm needs at least one file shared between the bug-
introducing or bug-fixing commit(s) to establish a connection. By conducting this analysis,
we aim to (i) deepen our comprehension of the frequency with which the files referenced in
bug discussions are included in bug-introducing or bug-fixing commits and (ii) identify file
references that may enhance the accuracy of the SZZ algorithm in linking such commits.
Hence, we ask:

RQ2: How often are files mentioned in bug report discussions part of bug-introducing
or bug-fixing commits?

Tangled commits encompass changes that do not relate to the bug fix, such as evolv-
ability changes or other functional modifications. By focusing solely on pertinent files, we
can diminish the interference from irrelevant files in SZZ, thus enhancing its precision in
pinpointing bug-introducing commits. Our investigation centers on the potential use of files
mentioned in bug report discussions for this purpose. Therefore, we ask:

RQ3: Can the content of developers’ discussions assist in filtering tangled commits,
thus refining SZZ accuracy?

Remodeling SZZ 9

Ghost commits frequently occur in practice [11], but SZZ can not link them to bug-
introducing commits using its current heuristics. Consequently, sources of information other
than the versioning system become essential. In this research question, we explore the po-
tential of using file references (references to source code files in bug report discussions) to
associate files external to the bug-fixing commit with bugs. Should the file be pertinent to
the bug, it could direct us to the appropriate bug-introducing change. Hence, we ask:

RQ4: Can developers’ discussions be used to infer external files and mitigate the impact
of ghost commits?

3.2 Data Collection

Mozilla Ecosystem: Mozilla is an open-source software community that develops and
maintains various software products, such as the Firefox browser and Thunderbird email
client.2 We sourced bug discussions from the Mozilla ecosystem for various reasons.3 First,
unlike previous studies that use SZZ to label the bugs [31, 32, 33], Mozilla developers since
2019 started manually referencing the other bugs (with Bug ID) in Bugzilla that have caused
this bug or the bugs caused by this bug. It is indicated in Bugzilla using the field Regressed
by and Regression for bug-introducing and bug-fixing respectively. Thus providing the reli-
able ground truth for identifying and verifying bug-introducing and bug-fixing commits with
SZZ.4 Second, Mozilla employs an open-source issue tracking system, known as Bugzilla
as its primary issue tracker. This platform presents bug discussions, with all remarks per-
taining to a specific bug displayed in threaded comments as shown in Figure 2. Third, the
codebase of Mozilla exhibits a wide diversity in terms of domains, project size, and pro-
gramming languages as shown in Table 1. The table shows the programming languages, the
count of files, the number of empty lines (listed under Blanks), the quantity of lines with
code comments (in Comments), and the lines of code (LOC) for each language. Lastly, It
also provides the BugBug tool [18], which facilitates exploration of the codebase, its history,
and the comprehensive inspection of all bugs discussed upon in Bugzilla. We collect every
bug discussion as well as the associated bug-introducing and bug-fixing commits following
the strategy by Petrulio et al. [11] .

Bug Report Collection: From Bugzilla, we collected bug reports following various criteria.
Our criteria encompassed all bugs from 2019 marked as closed, resolved, and have the field
Regressed by to denote the bug-introducing commits, yielding a dataset of 12,472 bugs, each
accompanied by its respective discussion. Table 15

PR Collection: Various studies have shown the increasing trend of using multi-commit de-
velopment model (e.g, PRs in GitHub) [34, 35], as it enables developers to bundle changes
together that are spread across multiple commits, e.g., set of commits to fix a bug. In Mozilla,
these sets of commits (bundled commits) are referred to as commit-sets rather than the PRs.
For simplicity reasons, we referred to the commit-sets of bug-fixing and bug-introducing

2 https://www.mozilla.org/en-GB/
3 https://www.mozilla.org/en-US/
4 https://wiki.mozilla.org/BMO/UserGuide/BugFields
5 https://github.com/PR-research-data-tools/RP-remodeling-szz-discussions/tree/

main/RQ2-RQ3-RQ4/SZZ-evaluation/preliminary_analysis.ipynb

https://www.mozilla.org/en-GB/
https://www.mozilla.org/en-US/
https://wiki.mozilla.org/BMO/UserGuide/BugFields
https://github.com/PR-research-data-tools/RP-remodeling-szz-discussions/tree/main/RQ2-RQ3-RQ4/SZZ-evaluation/preliminary_analysis.ipynb
https://github.com/PR-research-data-tools/RP-remodeling-szz-discussions/tree/main/RQ2-RQ3-RQ4/SZZ-evaluation/preliminary_analysis.ipynb

10 Pooja Rani et al.

Table 1: Languages involved in the Mozilla codebase

Language Files Blanks Comments LOC

JavaScript 72,870 1,199,781 1,753,236 5,540,827
C++ 11,772 801,098 669,043 4,476,606
HTML 90,776 463,590 105,185 4,118,159
C/C++ Header 16,564 519,357 956,346 2,475,718
Rust 8,365 246,505 442,208 2,384,387
C 3,998 321,980 502,674 2,158,164
JSON 2,245 883 0 1,190,423
Python 6,746 222,750 260,302 872,281
XML 2,813 7,005 2,973 453,026
Assembly 561 35,477 35,924 294,756
INI 12,582 73,130 175 231,725
XHTML 3,562 23,033 8,097 189,678
Java 854 24,503 62,588 156,493
Other 11,893 745,785 178,693 1,227,722

Total 251,601 4,174,520 4,977,444 25,769,965

Table 2: Description of bugs having the fields Regressed By and Regression in Bugzilla to
extract bug-introducing and bug-fixing PRs (commit-sets) and commits.

Cases of bugs with various fields Bugs Bug-fixing Bug-introducing
PRs Commits PRs Commits

All bugs 12,472 10,089 14,486 11,879 74,948
Bugs having Regressed By 11,879 10,021 14,356 11,879 74,948
Bugs having Regressed By and Regression 10,021 10,021 14,356 10,021 63,956

commits as bug-fixing PR and bug-introducing PR. Based on the methodology of our pre-
vious work [11], we first mined the bugs of Mozilla’s codebase, which contains the links
between its bug-introducing and bug-fixing commit-sets via the fields Regression and Re-
gressed By. Then, we mapped the commit-sets to the individual bug-introducing and bug-
fixing commit levels as required by SZZ.

Specifically, we used the BugBug tool [18] to collect the commits with their metadata
and all bugs published on Bugzilla. Each commit contains the identifier of the bug it fixes
(denoted by the field Regression in Bugzilla), and all the commits that fix the same bug
represent a bug-fixing commit-sets or PR. To run SZZ on a commit-set, we executed it
on each commit belonging to the same commit-set and merged the results later on. We
show the details of 12,472 bugs with the fields of our interest available in Bugzilla, e.g.,
bugs have the Regressed By field (bug-introducing commit-set), have the Regression field
(bug-fixing commit-set), or both available as shown in Table 2. Since many bug-fixing
commits in our dataset introduces a bug as well, such PRs are known as regression PRs,
e.g., [Bug:1362919]. We found 887 such regression PRs (2,110 commits) in our dataset.
With BugBug, we also extracted the list of modified files in bug-fixing commits following
the methodology by Petrulio et al. [11]. SZZ uses these files to link bug-fixing to bug-
introducing commits as it analyzes the changes made in these files and traces the commits
where recent edits were performed on the files. Since one bug-fixing commit can contain

https://bugzilla.mozilla.org/show_bug.cgi?id=1362919

Remodeling SZZ 11

multiple types of changes, it can lead to multiple bug-introducing commits. Therefore, the
relation between bug-fixing and bug-introducing PRs in our dataset is 1:N.

3.3 Methodology

We aim to first understand the reasoning behind the file being mentioned in the bug report
discussion and then investigate if these mentioned files can help address the challenges of
tangled commits and ghost commits as shown in Figure 4. To this end, we begin by gath-
ering a dataset of bug reports as shown in steps (1) and (2) in Figure 4. We then formulate
various heuristics and strategies to automatically extract discussed or referenced files from
the reports to leverage them later on to answer various RQs. Following the heuristics, we
analyze a subset of bug reports (i.e., 369) to first validate our file extraction methods. Then,
we manually assess these bugs’ discussions to grasp the reasoning behind the file references
in relation to the bug, addressing RQ1, as illustrated in Figure 4. In the final stage, SZZ
adds these file references to the list of relevant files (files modified in bug-fixing commits)
to trace bug-introducing commits, aiming to lessen the influence of tangled commits and
ghost commits. Specifically, we use file references to investigate whether they can be used
to eliminate superfluous files from bug-fixing commits (RQ3) and to reduce the impact of
ghost commits (RQ4).

(5) Handling
disagreements

(4) Manual analysis
of bug discussion

(1) Mine Mozilla codebase
of 251, 601 files

(2) Extract 12, 472
bugs

(8) Compute results

(3) Extract sample 369
bugs

(6) Develop strategies to
extract and match file
references to commits

(7) Run SZZ
variants on various

strategies

Fig. 4: Study Design to perform manual analysis and investigate SZZ on the usefulness of
file references to identify bug-introducing commits

3.3.1 RQ1: Rationales behind File Discussion

This research question seeks to extract file references from bug discussion and explore the
common reasons why developers reference files in bug report discussions using thematic
analysis [36, 37].

For every bug in the bug dataset (12,472 bugs), we obtained all associated comments
from the bug discussion and extracted any file references it contains. In the extraction pro-
cess, we preprocessed the comment text to identify file paths, discarding words that neither
represented a file nor a file path. To accurately identify file paths, we carried out a prelim-
inary analysis. Within this analysis, two authors evaluated comments related to 25 bugs,
devising initial heuristics to pinpoint the file path. Informed by the findings of this initial
exploration, we excluded all file references directed at Mozilla wikis, as bots automati-
cally add these references to the bug discussions. We then assembled the file extensions
found within the remaining comments. Due to time and resource limits, we only targeted
extensions associated with a minimum of 500 files. As a result, we identified the 29 most
prevalent file extensions used in Mozilla’s systems, as detailed in Table 1. Our analysis sub-
sequently revolved around checking whether a comment in a discussion contained any of
these identified extensions. As a result, we collected 9,281 bug reports where relevant files

12 Pooja Rani et al.

were discussed. The specific implementation details for finding file paths of various lan-
guages can be accessed at the provided link.6 After the preliminary analysis, we conducted
additional to verify the heuristics and further analyze which of those files are referenced in
the discussions and why.

We determined the minimum size of statistically significant samples of bug reports from
9,281 bug reports using the confidence level of 95% and the margin of error to 5% as used
in previous studies [38] using the same formula [39]. As a result, we got a sample size set
of 369 bugs. We sampled the bugs using the random sampling without replacement. Thus,
for each bug, we collected its ID, link to the bug discussion in Bugzilla, and the referenced
files in the discussion.

The preliminary analysis of 25 samples helped us formulate the initial taxonomy of
rationales. Two authors of this paper independently analyzed these sample discussions and
described their rationales. Then the authors discussed together their taxonomy to get an
initial draft. We further validated and extended this taxonomy with a manual analysis of
the statistically significant samples, i.e., 369 bugs, following a three-phase method. In the
first phase, two authors independently examined all the bug discussions and identified the
rationale for mentioned files. There can be multiple files mentioned in each bug that can be
discussed in different contexts, e.g., one file can be discussed to explain bug origin while
another file can help reproduce the bug. Similarly, one file can also be discussed in different
contexts, e.g., file is mentioned to describe the bug and to solve the bug. Thus, there can
be multiple rationales for one bug discussion. Whenever the existing taxonomy of rationale
lacks that particular context or is unclear for the author, the author add a new rationale for
the bug. For instance, in [Bug:1691941] one evaluator identifies that the file is discussed to
describe the bug and a potential solution. The other evaluator, in its analysis, also identified
that some files are mentioned in the error log. Thus, we independently get two categories
for the bug. In the second phase, for each bug the evaluators matched the evaluations of
rationales and marked their level of agreement and disagreement cases (with the label agree,
partial, and disagree). For example, in the case of [Bug:1691941], we found the evaluators
agreed partially as the second evaluator found an extra category. The authors agreed wholly
on 73% of the cases, partially agreed on 21%, and disagreed on 6% of the cases. The partial
agreements were mainly due to missing additional rationales or naming mismatches. The
disagreement cases were often due to different formats of reporting files in System dumps,
bug description, and others. Thus, to measure Cohen’s kappa metric, we considered the
partial agreements as agreements as both evaluators agreed on the existing rationales and
found the value of Cohen’s k metric: 0.859, which is considered an almost perfect agreement
between the evaluators. In the third step, the evaluators mutually discussed the disagreement
cases and settled on the final list of rationales for each bug. The replication package provides
the detailed classified for all bugs [19].

3.3.2 RQ2: Linking Referenced Files to Mozilla Ecosystem Files

Referenced File Collection: As we want to investigate the usefulness of file references for
RQ3 and RQ4, we first extracted the referenced files from the bug reports following the steps
described in RQ1. From 12,472 bugs, we found that in 74.41% of the bug reports (9,281
bugs), developers mentioned at least one file. In the next step, we ensure that these files
actually exist in the Mozilla codebase. To do so, we mined all modifications performed in

6 https://github.com/PR-research-data-tools/RP-remodeling-szz-discussions/tree/
main/RQ2-RQ3-RQ4/SZZ-evaluation/preliminary_analysis.ipynb

https://bugzilla.mozilla.org/show_bug.cgi?id=1691941
https://bugzilla.mozilla.org/show_bug.cgi?id=1691941
https://github.com/PR-research-data-tools/RP-remodeling-szz-discussions/tree/main/RQ2-RQ3-RQ4/SZZ-evaluation/preliminary_analysis.ipynb
https://github.com/PR-research-data-tools/RP-remodeling-szz-discussions/tree/main/RQ2-RQ3-RQ4/SZZ-evaluation/preliminary_analysis.ipynb

Remodeling SZZ 13

Mozilla from its creation until the current version: for each filename, we saved all the file
paths related to that filename (e.g., file.png: [--a/path/to/file.png; --b/path/to/
file.png]). Then, we used this map to parse a file mentioned in a bug discussion into a file
that existed in Mozilla repositories’ history. To identify the existence of the mentioned file
in the Mozilla system, we applied two strategies:

– Bug-fixing parsing (FP): for each bug, we first tried to match every file mentioned in the
bug discussion to one of the files modified in bug-fixing commits, as this ensures that
the files involved in bug-fixing commit-sets exist in Mozilla. For the files that are not
part of bug-fixing commits, we used the Relaxed parsing (RP) strategy.

– Relaxed parsing (RP): for each file mentioned by developers in bug discussion, we select
the file path from the Mozilla system with the highest similarity score (described later) if
the similarity score between these files paths is greater than 0.5. The threshold is selected
based on the manual analysis process and an iterative process to ensure that similar file
paths are not discarded. We observed that many files mentioned in the bug discussions
contain the local path of the user (running the application or test case); To ensure that
such paths are not discarded, we kept the similarity threshold at 0.5 [40]. We also tested
with a more strict parsing strategy to see how much the developer mentions the full
file path, i.e., similarity threshold at 0.8; however, we found that it did not include any
mentioned file in bug-fixing commits for SZZ input.

1 file1 = "this/is/two/level/more/file/path1.txt" //file in Mozilla
2 file2 = "two/level/less/file/path2.txt" //file mentioned in bug report
3
4 depth1 = depth(file1) // → 7
5 depth2 = depth(file2) // → 5
6 L = min(depth1, depth2) // → 5
7
8 trim1 = trim(file1, L)//'two/level/more/file/path1.txt'
9 trim2 = trim(file2, L)//'two/level/less/file/path2.txt'

10
11 lev_sim = list()
12 for i in range(L):
13 i_distance = lev_distance(trim1[i], trim2[i])
14 i_ratio = i_distance/max(length(trim1, trim2)
15 lev_similarity = 1 - i_ratio
16 lev_sim.append(lev_similarity)
17
18 → lev_sim = [1, 1, 0, 1, 0.89]
19 → avg_sim = avg(lev_sim) = 0.78

Listing 1: Measuring similarity between two file paths

Similar to previous works [40, 41, 42], we compared two file paths using Levenshtein
distance-based similarity [43] as shown in Listing 1. Given two file paths, we defined the
maximum similarity length as L – the minimum number of common folders in both file
paths. The similarity is represented as the mean of Levenshtein similarity between the latest
L folders in the same position (or level) of the two file paths. We applied the Levenshtein
similarity on each folder level to reduce the effect of edit distance across folders of different
nesting levels. For example, Listing 1 shows the process of matching two files (file1 and
file2) (one file is mentioned in bug discussion, and another is either modified in bug-fixing
commits or present in version control history) and computing their Levenshtein similarity.

Once we devise the strategies to match the files mentioned in the bug discussion to
the files in the Mozilla system, we check if the mentioned files are part of bug-introducing

--a/path/to/file.png
--b/path/to/file.png
--b/path/to/file.png

14 Pooja Rani et al.

and bug-fixing commits to answer RQ2 on how often the files mentioned in bug report
discussions are modified in those bug commits.

A file mentioned in the bug discussion can be part of a bug-introducing or bug-fixing
commit(s), both, or none; we use the following definitions for various cases:

– FFC: a f iles in the bug discussion are only part of the bug-fixing commit-set, also re-
ferred to as PR

– FBC: the f iles in the bug discussion are only part of the bug-introducing PR
– FFBC: the f iles in the bug discussion are part of both (bug-introducing and bug-fixing

PR)
– FNC: the f iles in the bug discussion is not part of either of them

Identifying various cases of whether the files discussed in bug reports are indeed part
of bug-fixing or bug-introducing PRs, can help test our hypothesis on the relevance of these
file references for SZZ. For example, when the file references discussed in bug reports are
modified in bug-fixing commits (FFC, or FFBC), we can use them to remove noisy files
from bug-fixing. Similarly, in the case of FBC or FFBC, we can add extra file references
to bug-fixing to trace bug-introducing commits. We identified the case information (e.g.,
FFC, FBC) by matching the mentioned files in the bug discussion with the files modified in
bug-introducing or bug-fixing commits using the FP and RP strategies (as described above).

Once we developed the strategies to extract the file references from bug discussion (in
RQ1) and match them to the files in Mozilla (RQ2), we applied each strategy independently
or in combination on the RoTEB dataset to check the effectiveness of SZZ for the case of
tangled commit (RQ3) and ghost commits (RQ4), as shown in Table 3.

3.4 RQ3 and RQ4: Tangled Commits and Ghost Commits

These RQs focus on using the files mentioned in the bug discussion to investigate whether
they could help address the problem of tangled commits and ghost commits in SZZ.

To detangle the commit(s), we should remove files from a bug-fixing commit so that
SZZ trace only the modification of files relevant to identify bug-introducing commits; there-
fore, we leverage the bug discussion files and match them to the Mozilla codebase files using
the DFP (Detangle with FP) and DRP (Detangle with RP) strategies, as described in Table 3.

To address the problem of ghost commits (where the bug-introducing and bug-fixing
commits do not share any common file as required by SZZ), we should add additional files
in bug-fixing commits so that SZZ can trace their modification and identify bug-introducing
commits. If these additional files are not modified in bug-fixing commits, then we can not
apply the FP strategy as the intersection between the mentioned files and the modified files
in the bug-fixing commits will be empty. Therefore, we leverage the bug discussion files and
match them to the Mozilla code base using the RP strategy, resulting in the URP strategy
shown in Table 3

We also test whether various parsing strategies applied in combination are more effec-
tive than applying them separately to address the problem of tangled commits and ghost
commits. For example, if first removing noisy files from bug-fixing commit (using the DFP
or DRP strategy) and then adding additional files (using the URP strategy) to it can be effec-
tive in handling the mentioned problems. Therefore, we combined DFP with URP and DRP
with URP, resulting in DFURP and DFURP strategies , respectively, as shown in Table 3
and Figure 5. In a nutshell, we keep files shared by the bug-fixing commits and bugs discus-
sion to solve the tangling problem and files not part of bug-fixing commits but shared by the

Remodeling SZZ 15

Table 3: The file parsing strategies (FP and RP) (devised in RQ2) applied to remove or add
files for tangling commits (RQ3) and ghosting commits (RQ4)

Strategy Strategy Expansion Description

DFP Detangle with FP Remove the noisy files from the bug-fixing commit. The files men-
tioned in the bug discussion are matched in the Mozilla repository
using the FP strategy and the files that do not match are identified
as noisy files

DRP Detangle with RP Remove the noisy files from the bug-fixing commit. The men-
tioned files are matched in the Mozilla repository using the RP
strategy and the files that do not match are identified as noisy files

URP Unghost with RP Add extra files in the bug-fixing commit that are mentioned in the
bug discussion and are matched in the Mozilla repository using the
RP strategy

DFURP Detangle with FP and
Unghost with RP

Remove the noisy files from the bug-fixing commit and then add
the extra files to it

DRURP Detangle with RP and
Unghost with RP

Remove the noisy files from the bug-fixing commit and then add
extra files to it. The mentioned files are linked to the Mozilla repos-
itory using the RP strategy in both steps.

bug-introducing commits and bugs discussion to solve ghost commits. Figure 5 shows nu-
merous workflows and how files from bug discussion can help solve the problem of tangling
commits (shown in detangling workflow) and ghost commits (shown in extrinsic workflow)
compared to the normal workflow of SZZ.

To apply the approach of removing or adding files to bug-fixing commit, we adopted
a recent implementation of SZZ provided by Rosa et al. [14], PySZZ, as a baseline. We
adapted their tool to have the option of executing git blame function only on the specified
files rather than all files of a commit. Then, we selected five popular SZZ variations: B-SZZ,
AG-SZZ, L-SZZ, R-SZZ, and MA-SZZ to test our hypothesis. We limited our scope to
those variations since they do not leverage any language-specific features and, therefore, can
be applied to every project (in the Mozilla ecosystem). For each SZZ variation, we deployed
a dedicated virtual machine on an OpenStack cloud distribution and ran it on each strategy
applied to the dataset, e.g., DRP, URP. Also, as another baseline, we created a normal version
of the dataset without tangled or extrinsic workflow (‘Normal’ in Table 3 and ‘N’ in Table 9)
to test SZZ variations.

Since SZZ works at the commit level and our dataset is based on PRs (where one PR can
contain multiple commits); we created a commit-level version of our dataset by specifying
files to be analyzed for each commit by SZZ. Table 2 describes the PRs and commits when
the bugs have bug-introducing commits information, bug-fixing information, or both. If a
commit does not modify any of the relevant files, it is discarded. If there is no overlap of files
between the files modified in the bug-fixing commit and those mentioned in the discussion,
we select the files from the ground truth prepared by the Mozilla developers to run SZZ on;
this is to ensure that SZZ does not run on empty files. As mentioned earlier, SZZ requires
a file shared by bug-fixing and bug-introducing commits to be able to link them. In our
dataset, 7,554 bugs share at least one file among bug-fixing and bug-introducing commits
thus they can be linked by existing SZZ. With our hypothesis, the new variant, FI-SZZ, can
infer relevant files from bug discussions and thus can link in a total of 8,919 bugs as the files
mentioned in bug discussion are modified in bug-introducing commits as shown in Table 4.

16 Pooja Rani et al.

Cx commit

File modification link

Bug-introducing

Bug-fixing

Bug discussion

Missing file

C2 C4C1 C5

- Debugger.cpp:12
- Parser.cpp:86
- EnvironmentObject
- Front.js
- environment.js

Change
History

Tangling + Ghosting Workflow

C3

- Debugger.cpp
- Front.js
- environment.js

C2 C4C1 C5

- Debugger.cpp:12
- Parser.cpp:86
- EnvironmentObject
- Front.js
- environment.js

Change
History

c. Ghosting Workflow

C3

- Debugger.cpp
- Front.js
- environment.js

C2 C4C1 C5

- Debugger.cpp:12
- Parser.cpp:86
- EnvironmentObject

Change
History

b. Tangling Workflow

C3

- Debugger.cpp
- Front.js
- environment.js

C2 C4C1 C5

- Debugger.cpp:12
- Parser.cpp:86
- EnvironmentObject

Change
History

a. Normal Workflow

C3

Fig. 5: SZZ with (a) normal workflow, (b) tangling workflow, (c) ghosting workflow, and (d)
tangling + ghosting workflow.

Table 4: Description of relevant bugs where SZZ can link bug-fixing commit to bug-
introducing commit (FI-SZZ candidates) and sample bugs selected from the relevant bugs.

Datasets Bugs Bug-fixing Bug-introducing
PRs Commits PRs Commits

Relevant bugs SZZ can link with our approach 8,919 7,509 48,781 8,919 60,191
Statistical significant sample 620 535 847 620 4,107

Computing SZZ for additional files may exponentially increase computational time due
to the large number of files to match in a software repository and the limitation of the single-
threaded git process (required for git annotate functions). Therefore, we extracted a statis-
tically relevant sample of 620 randomly extracted bugs from 8,919 bugs. The size of this
sample has been calculated using the same formula [39] with a 99% of confidence level and
a 5% margin of error with respect to the population size. In this sample set, we have 535
bugs that are labeled by developers (or ground truth). We leverage the script devised for

Remodeling SZZ 17

PySZZ [14] to evaluate the results. We calculate the following information retrieval metrics
[44] that are used in the previous work as well [14]:

recall =
|correct ∩ identi f ied|

|correct|

precision =
|correct ∩ identi f ied|

|identi f ied|

F1 = 2 · recall · precision
recall + precision

Where identified refers to the set of bug-introducing candidates commit-sets retrieved
by SZZ, and correct refers to the set of bug-introducing commit-sets labeled by Mozilla
developers in the ground truth. In the end, we tested whether the differences in recall and
precision scores are statistically significant among the SZZ variations. We applied various
statistical tests, such as the Shapiro-Wilk test and Pair T-Test [45]. Specifically, we verified
the distribution of recall and precision scores for each SZZ variation with the Shapiro-
Wilk test. We found that these distributions follow a normal distribution. Then, we applied
the statistical Pair T-Test using SciPy 7 library to demonstrate the relevance of our parsing
strategies and measure their effect size.

4 Results

4.1 RQ1: Rationales behind File Discussion

For RQ1, we analyzed the rationales of why developers mention files in bug reports. From
the preliminary analysis, we identified frequent cases where developers reference some test-
ing files or links to wikis in the discussion. Not all these references were actually posted by
developers. For example, wikis were often posted by bots. We also observed that the files
were referenced in a specific format, e.g., with line numbers or without extensions. Informed
from these findings, we adapted the file extraction technique accordingly. Also, the prelim-
inary analysis helped us in formulating the initial draft of the taxonomy of rationales, e.g.,
System Dumps, Bug dependency. In the next step, we validated and extended this taxonomy
with a larger sample of 369 bugs. Based on the analysis of 369 bugs, we obtained the eleven
categories described in Table 5.

Most file names appearing in bug discussions are classified as System dumps: they are
part of crash reports, stack traces, and logs, usually provided by bots that monitor the con-
tinuous integration and development (CI/CD) pipeline.

Another common reason developers mention files is that they are trying to understand
the bug and speculate on the files that might have caused it or can help fix it (Bug description
category in Table 5). For example, in one of the bugs [Bug:1739924], the developer points
out an unexpected file “We have not touched StringBundle in years as it is on the path
to being deprecated.” In another instance [Bug:1620314], a developer speculated on the
probable reason for the bug and suggested modification in various mentioned files. However,
we found that developers do not always mention the names of the files but rather the buggy
code elements or snippets from them.

7 https://scipy.org/

https://bugzilla.mozilla.org/show_bug.cgi?id=1739924
https://bugzilla.mozilla.org/show_bug.cgi?id=1620314
https://scipy.org/

18 Pooja Rani et al.

Table 5: Resulting taxonomy of the rationales behind the files mentioned in bug discussions

Category Description #Bugs

System dumps The files appear in a crash report or a system log 240

Bug description Developers mention the files in describing the bug in details; such files
got impacted in the bug, might have caused the bug, or can fix the bug

127

Artifact reference Developers mention the files in the title of a bug, an attachment, or a
commit message

120

Bug reproducibility Developers mention the files that can help reproduce the bug 49

Solution draft Developers propose a modification to the files to draft a bug solution 49

Indirect resolutions Developers mention the files in the bug that is fixed by backout, missing
mapping from Thunderbird, or no fix decision

41

Link to extra files Developers link to the online source of the file, to wiki files, to addi-
tional files to reproduce the bug, or to failure logs

19

Bug dependency Developers mention the files that partly caused or fixed a dependent
bug

18

Code review Developers mention the files in a code review round 6

Code snippet The files appear in a code snippet discussed by developers 4

One of the initial steps of the bug life cycle is to reproduce the bug. We observed that
developers spend a significant effort in reproducing the bugs (the third most frequent cate-
gory, Bug reproducibility in Table 5). Such files can be external files that are specific to the
user (local files in the user system), test case files that detect the bug, or additional files that
the user thinks can help reproduce the bug step-by-step.

Once a bug is reproduced, developers discuss various solutions (Solution draft) to re-
solve the bug. They often provide modifications in a code snippet of the file but do not al-
ways mention the corresponding file names. All these suggested drafts in the bug discussion
do not become directly part of the final fix. Other developers review these drafted solutions
and propose further changes (code review category). For example, the developer reviews the
code in the bug discussion of [Bug:1623285] and points out that the bug was overlooked in
the code review. Such instances indicate developers care about the code review to maintain
the code quality.

Developers do not always mention the file names related to fixing bugs; they often pro-
vide links to these files (Link to extra files category) so that other developers can directly
access the files within the bug discussion to understand and fix the bug quickly. These links
direct to files on other sources, such as GitHub, Mozilla source code browser, and Wikis. 8

We also found the files are mentioned in various artifacts (Artifact reference) as well, e.g.,
title of a bug, a bug-fixing commit, or an attachment. Also, in some cases, the files were
not directly involved in fixing the bug but rather part of other bugs that the current bug de-
pended on (bug dependency). For example, the developer refers to another bug where the
files are discussed [Bug:1770165], or the developer fixes the bug by fixing a dependent file
in [Bug:1538049].

For the remaining cases of files mentioned in bug discussions, we defined the Indirect
resolutions category shown in Table 5. This category covers the bug discussions that are

8 Please note that we only considered the files that are part of a direct link (HTML link), and if files are
mentioned on the resultant page of the link rather than on the bug page, we ignored such cases.

https://bugzilla.mozilla.org/show_bug.cgi?id=1623285
https://bugzilla.mozilla.org/show_bug.cgi?id=1770165
https://bugzilla.mozilla.org/show_bug.cgi?id=1538049

Remodeling SZZ 19

reverted back (backout) to fix the bug, or no decision has yet been taken on fixing it. For
example, in [Bug:1734984], a changeset caused the failure in a file (mentioned in the bug
discussion); however, the bug is resolved by reverting that changeset rather than touching
the file. Therefore, the bugs in this category have many files mentioned in bug discussions.

4.2 RQ2: Linking Referenced Files to Mozilla Ecosystem

As the files mentioned in bug discussions can be part of the files modified in bug-introducing
commit(s) or bug-fixing commit(s) or they might not be. Recognizing the files that truly
belong to bug-introducing and bug-fixing commits can bolster the efficiency of the SZZ
algorithm as it requires at least one shared file between the bug-introducing or bug-fixing
commit(s) to establish a connection. In this RQ, we linked the files mentioned in the bug
discussion to the files modified in bug-fixing or bug-introducing commits at the PR level.
Table 6 shows the distribution of bugs in which the files mentioned in bug discussion are
shared with a bug-fixing PR (FFC), bug-introducing PR (FBC), both (FFBC) and neither of
them (FNC) and in what proportion do they exist in our overall dataset and sample dataset.

Table 6: Overview of sample bug discussion with respect of each case

Case Case description #Bugs % of Dataset #Sample

FFC File references shared with bug-fixing PR only 995 10% 37
FBC File references shared with bug-introducing PR only 1,179 13% 48
FFBC File reference shared with both 4,376 47% 173
FNC File reference shared with neither 2,731 30% 111

With at least one file reference in bug discussion 9,281 100% 369

We found that developers discussed at least one file in 74.41% of the bugs (9,281 bugs),
and in 70.47% of those bugs (6,550 bugs), one of the discussed files is part of the bug-
introducing or bug-fixing PR, or both. SZZ requires at least one file to be shared between
the bug-fixing and bug-introducing PR to be able to link them, and that file should not
have only added lines (as SZZ can not trace edits on such files). Fulfilling its requirements,
SZZ in our dataset can potentially link 60.56% of bug-fixing PRs to bug-introducing PRs
(7,554 records out of 12,472). However, SZZ still fails to link 40% of bug-fixing PR to
bug-introducing PR as there is no shared file between them.

Not all of the files mentioned in bug discussions are modified in commits of our interest.
Table 7 shows four categories of bugs for the sample dataset where the mentioned files are
modified only in bug-fixing commit (FFC), bug-introducing commit (FBC), both (FFBC),
or neither (FNC). From our manual analysis of 369 bugs shown in Table 7, we can see
that not all of these mentioned files (in dumps) are valuable for resolving the bug. Among
the files mentioned in bug discussions and matched in the Mozilla system (according to the
matching strategies), we observed that in 25% of the cases (FNC), these mentioned files
are not involved in resolving bugs (or are not modified in the bug-introducing or bug-fixing
commits) while in 75% of the cases (FFC, FBC, and FFBC), these files help identify or fix
the bug. The files that could be relevant to SZZ tend to be on the top of the stack trace.

In RQ1, we found various reasons why developers mention files in bug reports. In this
RQ, we identified frequent cases in which the files are discussed in the bug reports, but
they are not modified in either bug-fixing or bug-introducing commits (FNC cases of 111

https://bugzilla.mozilla.org/show_bug.cgi?id=1734984

20 Pooja Rani et al.

Table 7: The files mentioned for various rationales and shared with bug-fixing commits
(FFC), bug-introducing commits (FBC), both commits (FFBC), and neither (FNC)

Rationale #FFC #FBC #FFBC #FNC

System dumps 19 38 118 64

Bug description 21 13 72 21

Artifact reference 15 21 79 5

Bug reproducibility 3 5 11 30

Solution draft 4 5 21 19

Indirect resolutions 2 10 4 25

Link to extra files 2 3 3 11

Bug dependency 0 9 3 6

Code review 0 0 1 5

Code snippet 0 0 2 2

Table 8: Description of sample 620 bugs with the files referenced in their bug reports and
matched in the Mozilla ecosystem

Workflow Strategy Bugs # Files mentioned in Reports # Matched Files in Mozilla

Tangled (RQ3) DFP 620 4,175 1,071
DRP 620 4,175 1,484

Ghost (RQ4) URP 620 4,175 2,564

Tangled + Ghost DFURP 620 4,175 1,910
DRURP 620 4,175 2,323

bug reports). Such files in the future can be utilized to further solve the problem of ghost
commits, where the bug-introducing and bug-fixing commits do not share any file or the
changes that cause or fix the bug lie outside of the repository.

With our approach, we can add the files mentioned in bug discussions in bug-fixing
commits and thus can target an additional 1,336 bugs or a total of 8,990 bugs. Specifically,
we can target 3,600 bugs: we can remove changes possibly unrelated to the fix for 2,164
bugs or bug-fixing PRs to reduce the noise of tangled commits (RQ3) as the bug discussion
mentions at least one file that is also modified in bug-fixing PR. We can add additional files
extracted from bug discussions to the respective bug-fixing PRs for 1,436 ghost commits
(RQ4) as the bug discussion mentions at least one file that is also modified in the bug-
introducing PR. Overall, our approach should impact 28.86% (3,600 bugs) of the dataset as
in the remaining cases, i.e., 71.14% (8,872 bugs), a file mentioned in the bug discussion is
not part of either of bug-introducing or bug-fixing PRs (FNC). For the sampled 620 bugs for
RQ3 and RQ4 as shown in Table 8, we extracted the files referenced in their bug discussions
and matched the files in the Mozilla ecosystem based on various parsing strategies (as shown
in Table 3).

Remodeling SZZ 21

4.3 RQ3: Mitigating Tangled Commits

Once we identified the files being mentioned in bug discussions and being modified in com-
mits of our interest, we investigated whether these files could be useful to detangle commits
and identify bug-introducing commits.

Table 9 shows the results for the selected SZZ variations, e.g., B-SZZ, AG-SZZ for
various detangled datasets formulated using different file parsing strategies, i.e., the normal
version of the dataset (shown in the N column), the dataset prepared using the FP strategy
(shown in the FP column), and the dataset prepared using the RP strategy (shown in the
RP column). The results are computed for various parsing strategies on the representative
sample of 620 bugs, where 535 bugs are labeled by Mozilla developers (ground truth).

Since the input of SZZ is filtered using the files mentioned in a bug discussion, we
can only improve the precision of SZZ by discarding noisy files from the computation.
Table 9 shows that for all SZZ variations (except L-SZZ), we lose from 1 to 4 percentage
in recall points for an improvement in the precision of 2 to 4 percentage points compared
to the normal case (‘N’). The DFP strategy (detangled with bug-fixing parsing) is more
effective than DRP, as shown in the DFP column in F-measure, increasing the F-score of all
SZZ versions except R-SZZ. With our approach, even the noisy versions of SZZ, i.e., B-
SZZ, AG-SZZ, and MA-SZZ significantly improve their precision: over 300 false positive
records from their normal version of the SZZ (denoted by the N column in Table) have been
discarded in the DFP strategy (shown in DFP column in Identified). For instance, R-SZZ
obtains a minor improvement in precision despite the algorithm’s overall performance being
unchanged (represented by F-Score). The correctly identified bugs are almost identical for
each variation and parsing strategy.

Figure 6 shows the agreement of SZZ variants on the DFP strategy. It reveals a sig-
nificant overlap between the variants as 9 out of 10 comparisons share more than 70% in
the correctly identified bugs. This highlights that the DFP strategy (i.e., keeping the only
files in the bug-fixing commit that are mentioned in the bug discussion) does not under-
mine the number of bugs correctly linked by SZZ. While it reduces the number of identified
bug-introducing commits, it also produces more accurate links from bug-fixing commits to
bug-introducing commits. Studies have shown various effects of false positives on develop-
ers, such as developers having to spend more time reviewing false positives and lacking trust
in static analysis tools and defect prediction models [46, 47]. Having fewer but more accu-
rate results in the case of identifying bug-introducing commits can help developers better
trust the tools and techniques based on them.

22 Pooja Rani et al.
Ta

bl
e

9:
S

Z
Z

’s
pe

rf
or

m
an

ce
w

ith
de

ta
ng

lin
g

st
ra

te
gi

es
D

FP
an

d
D

R
P

(S
am

pl
e

B
ug

s
=

62
0,

C
or

re
ct

(l
ab

el
ed

by
de

ve
lo

pe
rs

)=
53

5)
.

T
he

bo
ld

va
lu

es
de

no
te

th
e

la
rg

es
tv

al
ue

ac
hi

ev
ed

by
on

e
of

th
e

st
ra

te
gi

es
.

Va
ri

at
io

ns
Id

en
tifi

ed
C

or
r.
∩

Id
en

t.
R

ec
al

l
Pr

ec
is

io
n

F-
M

ea
su

re
N

D
FP

D
R

P
N

D
FP

D
R

P
N

D
FP

D
R

P
N

D
FP

D
R

P
N

D
FP

D
R

P

B
-S

Z
Z

1,
38

3
1,

05
6

1,
21

2
24

2
22

0
23

6
0.

45
0.

41
0.

44
0.

17
0.

21
0.

19
0.

25
0.

28
0.

27
A

G
-S

Z
Z

1,
33

3
1,

01
3

1,
13

6
21

7
20

1
21

3
0.

41
0.

38
0.

40
0.

16
0.

20
0.

19
0.

23
0.

26
0.

25
L

-S
Z

Z
50

3
44

6
48

1
14

7
14

2
14

7
0.

27
0.

27
0.

27
0.

29
0.

32
0.

31
0.

28
0.

29
0.

29
R

-S
Z

Z
51

3
45

5
49

2
18

5
17

4
18

2
0.

35
0.

33
0.

34
0.

36
0.

38
0.

37
0.

35
0.

35
0.

35
M

A
-S

Z
Z

1,
43

9
1,

09
2

1,
23

8
20

9
19

3
20

6
0.

39
0.

36
0.

39
0.

15
0.

18
0.

17
0.

21
0.

24
0.

23

Ta
bl

e
10

:S
Z

Z
’s

pe
rf

or
m

an
ce

w
ith

bo
th

de
ta

ng
lin

g
an

d
un

gh
os

tin
g

st
ra

te
gi

es
D

FU
R

P
an

d
D

R
U

R
P.

(S
am

pl
e

B
ug

s
=

62
0,

C
or

re
ct

(l
ab

el
ed

by
de

ve
lo

pe
rs

)=
53

5)
.T

he
bo

ld
va

lu
es

de
no

te
th

e
la

rg
es

tv
al

ue
ac

hi
ev

ed
by

on
e

of
th

e
st

ra
te

gi
es

.

Va
ri

at
io

ns
Id

en
tifi

ed
C

or
r.
∩

Id
en

t.
R

ec
al

l
Pr

ec
is

io
n

F-
M

ea
su

re
N

D
FU

R
P

D
R

U
R

P
N

D
FU

R
P

D
R

U
R

P
N

D
FU

R
P

D
R

U
R

P
N

D
FU

R
P

D
R

U
R

P
N

D
FU

R
P

D
R

U
R

P

B
-S

Z
Z

1,
38

3
1,

05
7

1,
22

8
24

2
22

0
23

6
0.

45
0.

41
0.

44
0.

17
0.

21
0.

19
0.

25
0.

28
0.

27
A

G
-S

Z
Z

1,
33

3
1,

01
6

1,
14

8
21

7
20

1
21

3
0.

41
0.

38
0.

40
0.

16
0.

20
0.

19
0.

23
0.

26
0.

25
L

-S
Z

Z
50

3
44

6
48

1
14

7
14

2
14

7
0.

27
0.

27
0.

27
0.

29
0.

32
0.

31
0.

28
0.

29
0.

29
R

-S
Z

Z
51

3
45

5
49

3
18

5
17

4
18

2
0.

35
0.

33
0.

34
0.

36
0.

38
0.

37
0.

35
0.

35
0.

35
M

A
-S

Z
Z

1,
43

9
1,

09
7

1,
24

9
20

9
19

3
20

6
0.

39
0.

36
0.

39
0.

15
0.

18
0.

16
0.

21
0.

24
0.

23

Remodeling SZZ 23

B-
SZ

Z

AG
-S

ZZ

L-
SZ

Z

R-
SZ

Z

M
A-

SZ
Z

B-
SZ

Z
AG

-S
ZZ

L-
SZ

Z
R-

SZ
Z

M
A-

SZ
Z

1 0.88 0.62 0.76 0.84

0.88 1 0.71 0.87 0.96

0.62 0.71 1 0.76 0.74

0.76 0.87 0.76 1 0.9

0.84 0.96 0.74 0.9 1

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6: Overlap between SZZ variations’ when the DFP strategy is applied.

We performed various statistical tests, such as the Shapiro-Wilk test, to verify the dis-
tribution of precision and recall and the statistical Paired T-Test to find the improvement
brought by our file parsing strategies. Table 11 shows the p-values for the precision and re-
call values on our dataset with the normal approach, and our approach (the DFP strategy)
applied (indicated by the N vs. DFP column and N vs. DRP column) for selected SZZ vari-
ants. We can see that the p-value for the precision of the normal approach compared to the
DFP strategy for R-SZZ is significant (< 0.05), i.e., α = 0.02. Similarly, the precision of
the normal approach compared to the DRP strategy for B-SZZ and AG-SZZ is below the
standard significant size or p-values are significant, i.e., α = 0.01 and α = 0.04 respectively.
Thus, we can say that the parsing strategies impact the precision of R-SZZ, B-SZZ, and
AG-SZZ.

In the case of Recall for both strategies (N vs. DFP and N vs. DRP), p-values are above
the standard significant size, α = 0.05, except for R-SZZ in N vs. DFP, thus showing that
the parsing strategies are not so effective for improving the recall of SZZ variations except
for R-SZZ. To measure the effect of parsing strategies over the normal version, we use a
Paired T-test. Table 11 shows that the DFP strategy has a larger effect on the improvement
of precision for the majority of the SZZ variations.

4.4 RQ4: Mitigating Ghost Commits

We included the additional files mentioned in the bug discussion in bug-fixing commits to
investigate whether they could mitigate the ghost commits. Table 12 shows the performance
of SZZ variations (shown in the variations column), with the normal approach (shown in
the N column) and the URP approach.

24 Pooja Rani et al.

Table 11: Paired T-Test for Recall and Precision of Detangling options (file parsing strategies
(DFP or DRP) compared to the normal approach with effect size and p-value

Variations
N vs DFP N vs DRP

Precision Recall Precision Recall

effect p-value effect p-value effect p-value effect p-value
B-SZZ 4.75 2.51e-06 1.09 0.27 2.46 0.01 -0.43 0.66
AG-SZZ 4.02 6.50e-05 -0.26 0.79 2.00 0.04 -0.72 0.46
L-SZZ 1.66 0.09 1.20 0.22 0.00 1.00 -0.90 0.36
R-SZZ 3.02 0.02 2.05 0.04 1.73 0.08 0.75 0.45
MA-SZZ 4.02 6.50e-05 -0.03 0.97 1.73 0.08 -1.12 0.26

Table 12: SZZ’s performance with unghosting option (normal approach and URP approach)
(Bugs = 620,Correct = 535). The bold values denote the largest value achieved by one of
the approaches.

Variations Identified Corr. ∩ Ident. Recall Precision F-Measure
N URP N URP N URP N URP N URP

B-SZZ 1,383 1,386 242 242 0.45 0.45 0.17 0.17 0.25 0.25
AG-SZZ 1,333 1,333 217 217 0.41 0.41 0.16 0.16 0.23 0.23
L-SZZ 503 508 147 148 0.27 0.28 0.29 0.29 0.28 0.28
R-SZZ 513 519 185 185 0.35 0.35 0.36 0.36 0.35 0.35
MA-SZZ 1,439 1,440 209 209 0.39 0.39 0.15 0.15 0.21 0.21

Table 12 shows that linking additional files is counter-productive: the bug-introducing
commit sets retrieved by SZZ is slightly increased but did not improve the recall substan-
tially. Only for L-SZZ, the recall is increased by 0.01, without significantly impacting the
F-Score. Table 10 reports the results for the combined approaches for detangling and ex-
trinsic workflows, i.e., DFERPDFURP and DRERPDRURP presented in Table 3. Even in
this case, extrinsic reference support does not significantly impact: SZZ performances are
similar to those reported in Table 9.

5 Discussion and Future Work

Previous work has shown various approaches to link bug-fixing commits to bug-introducing
commits for VCS, as accurate links will lead to more reliable datasets and eventually to
better defect prediction models. In our study, we investigated whether the files mentioned
by developers in the bug discussion can be leveraged to identify the links to bug-introducing
commits. Although our approach showed some promise in helping tackle the problem of
tangled commits, it is ineffective in solving the problem of ghost commits. One approach
to improve could be to infer the external files from other sources. In our manual analysis
of the bug reports, we observed that developers discuss particular code elements without
mentioning the named of the files in which they are located. The current variations of SZZ
leverage the files (modified in bug-fixing commits) to trace bug-introducing commits rather
than the code elements. Inferring these file names based on the discussed code elements or
snippets can further hint towards the files involved in causing or fixing the bug. However, to
do so, matching the code elements or code snippets (mentioned in bug discussions) in the
whole project ecosystem is currently challenging due to the large potential candidate space

Remodeling SZZ 25

and prevalent code clones in the ecosystem. Future automated bug prediction techniques
can leverage these additional code elements or snippets to precisely identify the root cause
of the bug. Although the solutions based on code elements would be language-specific and
would work on specific SZZ versions, we hypothesize that they can further recover the links
to bug-introducing commits if they can be used to infer the relevant files. Such solutions
can be combined with more sophisticated static analysis techniques, such as analyzing the
correlation between the files involved in bug-introducing and bug-fixing commits and the
other external files co-changed with them. Recently, ChatGPT has been used for various
SE tasks [48]; we expect that ChatGPT can be used in future to further extract the relevant
parts (code elements, file references) from the bug discussion and can help improve SZZ in
identifying buggy code.

In addition to using bug discussions, one can use other artifacts, such as discussions
from the mailing lists and communication channels (slack or Wikis), to further add and
verify the file links. Although we expect such approaches to be useful for finding external
files, they require heavy computational load due to the use of git to run SZZ. To speed up
the process, a new way to store the development information is first required to parallelize
SZZ computations.

Bug reports also show other types of information developers communicate. For exam-
ple, we observed in [Bug:1739784] where developers discuss who should own the bug to fix
it. Although such information can not be directly used by SZZ (as it uses the file modified
in bug-fixing commits to infer bug-introducing commits), future work can find instances of
this information in bug discussions and leverage them to improve the bug assignment tech-
niques. Researchers have explored the effect of ownership [1] and showed its importance in
maintaining high-quality software; Even though Bugzilla has the feature to assign the bug
to a user, developer discussion in the bug reports hints that ownership can still be unclear
within a team and can require further discussion. In another case [Bug:1761233], the devel-
oper referred to another expert developer to find the root cause of the bug. Such instances
show the need to develop advanced techniques to automatically find the right owner to fix
the bug and save other developers time quickly.

In our study, we saw in [Bug:1625151] that developers are interested in having advanced
static analysis tools to perform a high-level analysis of the bugs to save time. In our current
approach, we have not considered any knowledge of developers who discussed these files in
the issue tracker or those who modify the files in bug-fixing commits.

In our current version of SZZ, we have used the annotate function (git blame) on the
changed lines in bug-fixing commits, which identifies the bug-introducing commits based
on when these changed lines were lastly modified. However, there is a possibility that bug-
introducing commits are not always in the most recent change but rather hidden further back
in the change history. Nguyen et al. [49] have shown that the bug-introducing commits are
often the initial code changes for specific bugs, e.g., vulnerabilities. Based on their work,
Bao et al. [50] proposed an improved version of SZZ, V-SZZ, to identify bug-introducing
for these bugs.. Future work can consider other variations to explore the change history of
Mozilla further.

6 Threats to Validity

Construct Validity. The main concern for the construct validity is related to the measure-
ments used in the analysis we selected. Mozilla follows a rather different process to many
popular development systems, rebase strategy, to merge a set of commits to the main branch.

https://bugzilla.mozilla.org/show_bug.cgi?id=1739784
https://bugzilla.mozilla.org/show_bug.cgi?id=1761233
https://bugzilla.mozilla.org/show_bug.cgi?id=1625151

26 Pooja Rani et al.

Consequently, all commits in the set appear as a single branch history. Also, the intermediate
commits can be tracked without losing authorship information, which is necessary for SZZ
to find the bug-introducing commits. Our approach might not directly work for the systems
that follow the squash strategy (the last commit supersedes the previous commits) to merge
commits to the main branch.

To extract file paths from bug discussions available in the issue tracker, we used an
automated script (used by previous work as well) [11]. To further verify the correctness of
file paths, two authors manually verified a sample of the file paths through a preliminary
analysis to discard irrelevant links (such as wiki links posted by bots).

To filter (to include or exclude files) files from bug-fixing commits based on the files
referenced in the bug discussion, we used a custom file path-matching criteria with a thresh-
old of 0.5 (relaxed parsing strategy). We chose this threshold based on manual analysis and
iterative process. We also tested with a strict parsing strategy with a threshold of 0.8 and
found that the strict parsing strategy did not filter any files from bug discussions for SZZ
input: files in bug discussion are rarely mentioned with the correct or full path, making
the comparison with modified files in bug-fixing commits rather difficult. Additionally, if a
file underwent renaming, our approach can handle such case as we use a custom file-path
matching approach based on folder matching and with a relaxing threshold of 0.5.

The next concern is the scope of ghost commits. Recent studies show that the bugs can
be due to the changes recorded in VCS (known as intrinsic bugs) or due to the changes that
happened outside of the repository (known as extrinsic bugs) [28]. We considered the ghost
commits for intrinsic bugs as the latter case (changes happening outside of the repository)
is not the direct responsibility of the Mozilla developers [51]. Thus, we focused on the bugs
whose origin still lies in the VCS but whose fix happened outside of the VCS. In such cases,
the fix changes are not captured in bug-fixing commits; therefore, the heuristics of SZZ can
not identify bug-introducing commit. We provided SZZ additional files from bug discussion
to the bug-fixing commit to trace its bug-introducing commits.

The last concern is the ground truth and the evaluation approach used in our work. We
used precision and recall measures, used in the previous work as well [14] to quantify the
accuracy of our linking approach on the Mozilla dataset. This dataset of PRs is labeled by
Mozilla developers, providing us with reliable ground truth, and it is used in previous works
as well [11].

Internal Validity. Generally, performing manual analysis introduces subjectivity in the pro-
cess. To reduce the chances of choosing unrepresentative samples, we used a random sam-
pling approach. We followed a standard approach of selecting a statistically significant sam-
ple, limiting the error to 5% for a confidence level of 95%. Similarly, we selected the statis-
tically significant sample of 620 bugs to run selected SZZ variations, limiting the error to
5% for a confidence level of 99%.

To reduce the effect of biases and subjectiveness in the manual analysis and in formu-
lating the taxonomy of rationales, two authors got involved in the analysis. They indepen-
dently analyzed their assigned samples not to influence each other classification. In 94% of
the cases, the authors agreed on the rationales (completely or partially). The disagreement
cases (nearly 6%) were often due to different formats of reporting files in System dumps,
bug description, and others. We mutually discussed every case of disagreement to finalize
the categories.

External Validity. The main concern for the external validity is the generalization of our
results. We sourced bug discussions from the Mozilla ecosystem for the reasons mentioned
in subsection 3.2 and section 1. Mozilla employs an open-source issue tracker system, e.g.,

Remodeling SZZ 27

Bugzilla. Since our approach infers the files based on NLP techniques, the file names can
be inferred from other bug discussion platforms such as JIRA. Similarly, our file parsing
strategy, being independent of language-specific choice, can also be used to match the files
mentioned in the discussion with the files modified in the change history.

Another concern is our dataset is linked at the commit-set (PR) level, whereas SZZ is
devised to work at the commit level. This can introduce some noise in SZZ results; for
example, the squash commits can lead to loss of authorship information or their individual
commits. However, Mozilla relies on the rebase strategy, which makes the version history
linear and preserves the author’s information. Also, the results achieved by our previous
work [11] in folding and unfolding commits at the PR level for SZZ are in line with the
ground truth by Mozilla developers. Also, many PRs are composed of a single commit, thus
further narrowing down the scope of potential noise by SZZ.

Various organizations can choose various platforms to host their source code, bug re-
ports, bug discussion etc.. Although different ecosystems, such as Google, Apache etc. can
use different systems of issue trackers or version control systems, developer discussion on
bugs remains similar on these platforms in natural languages. We selected the dataset and
ecosystem from Mozilla due to its diversity in terms of languages and domains. On the one
hand, our choice of the dataset complements the existing datasets in defect prediction; on the
other hand, it can be generalized to other ecosystems due to the file parsing strategy being
independent of language-specific choice.

Conclusion Validity. To ensure the relationship between the treatment and the outcome, we
manually analyze a sample of bug discussion and several relevant statistical tests, such as
measuring the data distribution using the Shapiro-Wilk test and paired T-test to compare the
parsing strategies on SZZ variations.

7 Conclusions

Researchers have conducted various empirical studies to understand the cause and impact
of poor software quality, e.g., identifying the buggy code or code changes that introduced
a bug. Several approaches, e.g., SZZ, are established to link bug reports to bug-fixing code
and eventually to buggy code. However, such approaches are inaccurate or biased due to
the lack of ground truth (by developers) and the various assumptions they hold. The prob-
lems of tangled commits and ghost commits are examples of problems that undermine these
assumptions.

Developers discuss bugs in bug reports and embed various kinds of information. We
analyze the content of bug reports and investigate whether the content can enhance the per-
formance of the SZZ in identifying bug-introducing commits more accurately. We found
that including files mentioned in the bug discussion can enhance the effectiveness of SZZ
in identifying bug-introducing commits by handling tangled commits. Our strategy, how-
ever, is still ineffective in handling the problem of ghost commits. We provide the dataset
called RoTEB, comprised of 12,472 bugs from Mozilla (the links established by Mozilla
developers), serving as a resource for further inquiries into software quality criteria.

Data Availability. The dataset prepared and analyzed in the study and the resultant software
(a version of SZZ, and code used to analyze the dataset) are available as a part of our replica-
tion package at the following link [19]: https://doi.org/10.5281/zenodo.11484723

Conflict of Interests. The authors have no conflict of interest.

https://doi.org/10.5281/zenodo.11484723

28 Pooja Rani et al.

Acknowledgements P. Rani and A. Bacchelli acknowledge the support of the Swiss National Science Foun-
dation for the SNF Project 200021_197227. We also appreciate the feedback from Pavlina Goncalves.

References

1. Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and Premkumar
Devanbu. Don’t touch my code! examining the effects of ownership on software qual-
ity. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, pages 4–14, 2011.

2. Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. Examining the impact of self-
admitted technical debt on software quality. In 2016 IEEE 23Rd international con-
ference on software analysis, evolution, and reengineering (SANER), volume 1, pages
179–188. IEEE, 2016.

3. Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bac-
chelli, and Premkumar Devanbu. On the" naturalness" of buggy code. In Proceedings
of the 38th International Conference on Software Engineering, pages 428–439, 2016.

4. Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. A large-scale empirical study of just-in-time
quality assurance. IEEE Transactions on Software Engineering, 39(6):757–773, 2012.

5. Boyuan Chen and Zhen Ming Jiang. Extracting and studying the logging-code-issue-
introducing changes in Java-based large-scale open source software systems. Empirical
Software Engineering, 24:2285–2322, 2019.

6. Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes induce
fixes? ACM sigsoft software engineering notes, 30(4):1–5, 2005.

7. Kim Herzig, Sascha Just, and Andreas Zeller. The impact of tangled code changes on
defect prediction models. Empirical Software Engineering, 21(2):303–336, 2016.

8. Christophe Rezk, Yasutaka Kamei, and Shane Mcintosh. The ghost commit problem
when identifying fix-inducing changes: An empirical study of apache projects. IEEE
Transactions on Software Engineering, 2021.

9. Gema Rodríguez-Pérez, Meiyappan Nagappan, and Gregorio Robles. Watch out for
extrinsic bugs! a case study of their impact in just-in-time bug prediction models on
the OpenStack project. IEEE Transactions on Software Engineering, 48(4):1400–1416,
2022. doi: 10.1109/TSE.2020.3021380.

10. Gema Rodríguez-Pérez, Gregorio Robles, Alexander Serebrenik, Andy Zaidman,
Daniel M Germán, and Jesus M Gonzalez-Barahona. How bugs are born: a model
to identify how bugs are introduced in software components. Empirical Software Engi-
neering, 25(2):1294–1340, 2020.

11. Fernando Petrulio, David Ackermann, Enrico Fregnan, Gül Calikli, Marco Castelluccio,
Sylvestre Ledru, Calixte Denizet, Emma Humphries, and Alberto Bacchelli. Szz in the
time of pull requests. arXiv preprint arXiv:2209.03311, 2022.

12. Sunghun Kim, Thomas Zimmermann, Kai Pan, E James Jr, et al. Automatic identi-
fication of bug-introducing changes. In 21st IEEE/ACM international conference on
automated software engineering (ASE’06), pages 81–90. IEEE, 2006.

13. Steven Davies, Marc Roper, and Murray Wood. Comparing text-based and dependence-
based approaches for determining the origins of bugs. Journal of Software: Evolution
and Process, 26(1):107–139, 2014.

14. Giovanni Rosa, Luca Pascarella, Simone Scalabrino, Rosalia Tufano, Gabriele Bavota,
Michele Lanza, and Rocco Oliveto. Evaluating szz implementations through a

Remodeling SZZ 29

developer-informed oracle. In 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE), pages 436–447. IEEE, 2021.

15. Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. Relink: Re-
covering links between bugs and changes. ESEC/FSE ’11, page 15–25, New York,
NY, USA, 2011. Association for Computing Machinery. ISBN 9781450304436. doi:
10.1145/2025113.2025120. URL https://doi.org/10.1145/2025113.2025120.

16. Peter Bludau and Alexander Pretschner. Pr-szz: How pull requests can support the
tracing of defects in software repositories. In 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 1–12. IEEE, 2022.

17. Chris Mills, Esteban Parra, Jevgenija Pantiuchina, Gabriele Bavota, and Sonia Haiduc.
On the relationship between bug reports and queries for text retrieval-based bug local-
ization. Empirical Software Engineering, 25(5):3086–3127, 2020.

18. Marco Castelluccio. Bugbug, June 2021. URL https://doi.org/10.5281/
zenodo.4911346.

19. Anonymous. Replication package for ‘On refining the szz algorithm with bug discus-
sion data’, Oct 2023. URL https://doi.org/10.5281/zenodo.11484723.

20. Daniel Alencar Da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta
Coelho, and Ahmed E Hassan. A framework for evaluating the results of the szz ap-
proach for identifying bug-introducing changes. IEEE Transactions on Software Engi-
neering, 43(7):641–657, 2016.

21. Edmilson Campos Neto, Daniel Alencar Da Costa, and Uirá Kulesza. Revisiting and
improving szz implementations. In 2019 ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM), pages 1–12. IEEE, 2019.

22. Valentina Lenarduzzi, Fabio Palomba, Davide Taibi, and Damian Andrew Tamburri.
Openszz: A free, open-source, web-accessible implementation of the szz algorithm. In
Proceedings of the 28th international conference on program comprehension, pages
446–450, 2020.

23. Davide Spadini, Maurício Aniche, and Alberto Bacchelli. Pydriller: Python framework
for mining software repositories. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 908–911, 2018.

24. Edmilson Campos Neto, Daniel Alencar Da Costa, and Uirá Kulesza. The impact of
refactoring changes on the szz algorithm: An empirical study. In 2018 IEEE 25th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 380–390. IEEE, 2018.

25. Steffen Herbold, Alexander Trautsch, Benjamin Ledel, Alireza Aghamohammadi,
Taher A Ghaleb, Kuljit Kaur Chahal, Tim Bossenmaier, Bhaveet Nagaria, Philip Make-
donski, Matin Nili Ahmadabadi, et al. A fine-grained data set and analysis of tangling
in bug fixing commits. Empirical Software Engineering, 27(6):125, 2022.

26. Yuanrui Fan, Xin Xia, Daniel Alencar Da Costa, David Lo, Ahmed E Hassan, and Shan-
ping Li. The impact of mislabeled changes by szz on just-in-time defect prediction.
IEEE transactions on software engineering, 47(8):1559–1586, 2019.

27. David Kawrykow and Martin P Robillard. Non-essential changes in version histories. In
2011 33rd International Conference on Software Engineering (ICSE), pages 351–360.
IEEE, 2011.

28. Gema Rodríguez-Pérez, Andy Zaidman, Alexander Serebrenik, Gregorio Robles, and
Jesús M González-Barahona. What if a bug has a different origin? making sense of bugs
without an explicit bug introducing change. In Proceedings of the 12th ACM/IEEE
international symposium on empirical software engineering and measurement, pages

https://doi.org/10.1145/2025113.2025120
https://doi.org/10.5281/zenodo.4911346
https://doi.org/10.5281/zenodo.4911346
https://doi.org/10.5281/zenodo.11484723

30 Pooja Rani et al.

1–4, 2018.
29. Pavneet Singh Kochhar, Yuan Tian, and David Lo. Potential biases in bug localization:

Do they matter? In Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering, pages 803–814, 2014.

30. Qianqian Wang, Chris Parnin, and Alessandro Orso. Evaluating the usefulness of IR-
based fault localization techniques. In Proceedings of the 2015 international symposium
on software testing and analysis, pages 1–11, 2015.

31. R Krishna, D Pryor, and T Menzies. The promise repository of empirical software
engineering data, 2015.

32. A Gunes Koru and Hongfang Liu. Building effective defect-prediction models in prac-
tice. IEEE software, 22(6):23–29, 2005.

33. Burak Turhan, Tim Menzies, Ayşe B Bener, and Justin Di Stefano. On the relative value
of cross-company and within-company data for defect prediction. Empirical Software
Engineering, 14(5):540–578, 2009.

34. Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German,
and Daniela Damian. The promises and perils of mining github. In Proceedings of the
11th working conference on mining software repositories, pages 92–101, 2014.

35. Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work practices and
challenges in pull-based development: The contributor’s perspective. In Proceedings of
the 38th International Conference on Software Engineering, pages 285–296, 2016.

36. Virginia Braun and Victoria Clarke. Using thematic analysis in psychology. Qualitative
research in psychology, 3(2):77–101, 2006.

37. Gerry Coleman and Rory O’Connor. Using grounded theory to understand software
process improvement: A study of irish software product companies. Information and
Software Technology, 49(6):654–667, 2007.

38. Pooja Rani, Sebastiano Panichella, Manuel Leuenberger, Mohammad Ghafari, and Os-
car Nierstrasz. What do class comments tell us? an investigation of comment evolution
and practices in pharo smalltalk. Empirical software engineering, 26(6):112, 2021.

39. Mario F Triola, William Martin Goodman, Richard Law, and Gerry Labute. Elementary
statistics. Pearson/Addison-Wesley Reading, 2006.

40. Ralf Ramsauer, Daniel Lohmann, and Wolfgang Mauerer. The list is the process: Reli-
able pre-integration tracking of commits on mailing lists. In 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering (ICSE), pages 807–818. IEEE, 2019.

41. Xiaoyin Wang, Yingnong Dang, Lu Zhang, Dongmei Zhang, Erica Lan, and Hong Mei.
Can i clone this piece of code here? In Proceedings of the 27th IEEE/ACM international
conference on automated software engineering, pages 170–179, 2012.

42. Jean-Gabriel Young, Amanda Casari, Katie McLaughlin, Milo Z Trujillo, Laurent
Hébert-Dufresne, and James P Bagrow. Which contributions count? Analysis of at-
tribution in open source. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), pages 242–253. IEEE, 2021.

43. Gonzalo Navarro. A guided tour to approximate string matching. ACM computing
surveys (CSUR), 33(1):31–88, 2001.

44. Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to in-
formation retrieval. Natural Language Engineering, 16(1):100–103, 2010.

45. William Jay Conover. Practical nonparametric statistics, volume 350. john wiley &
sons, 1999.

46. Nasif Imtiaz, Akond Rahman, Effat Farhana, and Laurie Williams. Challenges with
responding to static analysis tool alerts. In 2019 IEEE/ACM 16th International Confer-
ence on Mining Software Repositories (MSR), pages 245–249. IEEE, 2019.

Remodeling SZZ 31

47. Zhiyuan Wan, Xin Xia, Ahmed E. Hassan, David Lo, Jianwei Yin, and Xiaohu Yang.
Perceptions, expectations, and challenges in defect prediction. IEEE Transactions on
Software Engineering, 46(11):1241–1266, 2020. doi: 10.1109/TSE.2018.2877678.

48. Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C Schmidt.
Chatgpt prompt patterns for improving code quality, refactoring, requirements elicita-
tion, and software design. arXiv preprint arXiv:2303.07839, 2023.

49. Viet Hung Nguyen, Stanislav Dashevskyi, and Fabio Massacci. An automatic method
for assessing the versions affected by a vulnerability. Empirical Software Engineering,
21:2268–2297, 2016.

50. Lingfeng Bao, Xin Xia, Ahmed E Hassan, and Xiaohu Yang. V-szz: automatic iden-
tification of version ranges affected by cve vulnerabilities. In Proceedings of the 44th
International Conference on Software Engineering, pages 2352–2364, 2022.

51. Steffen Herbold, Alexander Trautsch, Fabian Trautsch, and Benjamin Ledel. Problems
with szz and features: An empirical study of the state of practice of defect prediction
data collection. Empirical Software Engineering, 27(2):42, 2022.

	Introduction
	Background and Related Work
	Study Design
	Results
	Discussion and Future Work
	Threats to Validity
	Conclusions

