
Do Comments follow Commenting Conventions?
A Case Study in Java and Python

Pooja Rani∗, Suada Abukar∗, Nataliia Stulova∗, Alexandre Bergel†, Oscar Nierstrasz∗
∗Software Composition Group, University of Bern, Bern, Switzerland

†Department of Computer Science (DCC), University of Chile, Santiago, Chile

� scg.unibe.ch/staff

Abstract—Assessing code comment quality is known to be a
difficult problem. A number of coding style guidelines have
been created with the aim to encourage writing of informative,
readable, and consistent comments. However, it is not clear from
the research to date which specific aspects of comments the
guidelines cover (e.g., syntax, content, structure). Furthermore,
the extent to which developers follow these guidelines while
writing code comments is unknown.

We analyze various style guidelines in Java and Python and un-
cover that the majority of them address more the content aspect
of the comments rather than syntax or formatting. However,
when considering the different types of information developers
embed in comments and the concerns they raise on various online
platforms about the commenting practices, existing comment
conventions are not yet specified clearly enough, nor do they
adequately cover important concerns. We find that developers
of both languages follow the writing style and content-related
comment conventions more often than syntax and structure
types of conventions. Our results highlight the mismatch between
developer commenting practices and style guidelines, and provide
several focal points for the design and improvement of comment
quality checking tools.

Index Terms—Comment analysis, Software documentation, Cod-
ing Style Guidelines, Coding Standards

I. INTRODUCTION

Developers use several kinds of software documentation, in-

cluding design documents, wikis, and code comments, to un-

derstand and maintain programs. Studies show that developers

trust code comments more than other forms of documenta-

tion [1]. As code comments are usually written in a semi-

structured manner using natural language sentences, and they

are not checked by the compiler, developers have the freedom

to write comments in various ways [2], [3], [4].

To encourage developers to write consistent, readable, and

informative code comments, programming language commu-

nities and several large organizations, such as Google and

Apache, provide coding style guidelines that also suggest

comment-related conventions [5], [6], [7]. These conventions

cover various aspects of comments, such as syntactic, stylistic,

or content-related aspects. For instance, “Use 3rd person
(descriptive), not 2nd person (prescriptive)” is an example

of a stylistic comment convention for Java documentation

comments [5]. However, to what extent these aspects are

covered within different style guidelines and languages is not

known. Therefore, we formulate the question: RQ1: Which

type of comment conventions are suggested by various style
guidelines?

As high-quality comments support developers in understand-

ing and maintaining their programs, it is essential to ensure

the adherence of their comments to the style guidelines to

evaluate the overall comment quality. Rani et al. have investi-
gated class comments of Smalltalk and their adherence to the

commenting conventions provided by a default template [8].

They found that Smalltalk developers follow writing style

and content-related comment conventions more than 50% of

the time, but they use inconsistent structure and formatting

of comment content. As Java and Python are among the

most popular languages in use, several research works have

focused on studying comments in Java and Python ([3], [4]),

some especially focusing on class comments [9]. However, it

remains largely unknown whether Java and Python developers

adhere to the commenting conventions suggested by the style

guidelines or not. To obtain this understanding, we formulate

another research question: RQ2: To what extent do developers
follow commenting conventions in writing code comments in
Java and Python?

Our initial results show that the majority of style guidelines

propose more content-related conventions than other types of

conventions, but compared to the different types of content

developers actually embed in comments ([3], [4], [9]), and the

concerns they raise on online platforms (e.g., StackOverflow
or Quora) regarding comment conventions [10], it is clear

that existing conventions are neither adequate, nor precise

enough. On the other hand, these style guidelines often include

conventions that are not relevant or applicable in many cases,

leading developers to ignore them.

When the conventions are applicable, developers often follow

the writing style and content conventions (80% of comments),

but violate structure conventions in Java and Python class

comments (nearly 30% of comments), confirming the previous

results for Smalltalk by Rani et al. [8]. Although the project-
specific guidelines provide very few additional class comment

conventions, these conventions are followed more often com-

pared to the conventions suggested by the standard guidelines

both in Java and Python class comments. The data related to

RQ1 and RQ2 is given in the replication package.1

1https://doi.org/10.5281/zenodo.5296443

165

2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM)

DOI 10.1109/SCAM52516.2021.00028

20
21

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l W
or

ki
ng

 C
on

fe
re

nc
e

on
 S

ou
rc

e
C

od
e

A
na

ly
si

s a
nd

 M
an

ip
ul

at
io

n
(S

C
A

M
) |

 9
78

-1
-6

65
4-

48
97

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SC

A
M

52
51

6.
20

21
.0

00
28

978-1-6654-4897-0/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: University Bern. Downloaded on February 04,2022 at 13:04:47 UTC from IEEE Xplore. Restrictions apply.

Our results highlight the mismatch between conventions sug-

gested by the style guidelines but not followed by developers

in their projects and vice versa. Verifying this mismatch is

currently not well-supported by tools or linters. The linters

currently support very limited comment conventions [11], [12],

e.g., they check the presence or absence of code comments,

or their formatting with code but not their content. Our

results indicate the need to conduct extensive studies on (i)

which comment-related conventions linters provide, (ii) how

well linters cover comment conventions from various style

guidelines, and (iii) building tools and techniques to reduce

the mismatch between developer commenting practices and

style guidelines.

II. STUDY DESIGN

Data collection. Rani et al. have previously investigated the

adherence of Smalltalk class comments to the conventions

provided by a default template [8]. To verify their results

across other languages, we analyze class comments in Java

and Python. Rani et al. also investigated class comments of

diverse Java and Python projects that vary in terms of size,

domain, and contributors [9]. We use their dataset of Java

and Python class comments for our analysis (RQ1 and RQ2).

Table I shows the list of these projects in the column Project
for the selected languages shown in the column Language.
a) Comment conventions in Style Guidelines (RQ1): The goal

of this RQ is to investigate the type of comment conventions

(or rules) various style guidelines suggest. The term comment
convention refers to suggestions or rules about various aspects

of comments, such as syntax, formatting, content, or writing

style. First, we analyze the coding style guidelines of the

projects (listed in Table I) which correspond to the Java and

Python projects in the Rani et al. dataset [9]. Then we extract
the comment-related rules from these guidelines. Each project

might refer to project-specific guidelines in addition to the

standard coding guidelines to customize its coding style. The

standard guidelines are used as the baseline guidelines in

the majority of the projects and are often provided by the

programming language community such as Oracle, PEP, or

organizations such as Google, Apache. In contrast, the project-

specific guidelines scope to the project and extend, clarify, or

conflict the standard guidelines such as Pandas.2 Table I shows

if a project supports project-specific commenting guidelines

(�) or not (×) in the column Project guideline, in addition to
the standard guidelines the project mentions on its web page

(listed in the column Standard guideline).

As within a style guideline, comment conventions can be

scattered across multiple paragraphs, we scan all sentences

and select those that mention any convention about comments.

A rule can target various types of comments, such as class,

method, package, or inline comments, or part of comments

(e.g., summary, parameters). In case a sentence targets multiple
comment types, we split the rule for each type. In total, we

collected 600 comment-related rules. We organized all rules

2https://pandas.pydata.org/pandas-docs/stable/development/contributing docstring.html

TABLE I
OVERVIEW OF THE SELECTED PROJECTS AND THEIR STYLE GUIDELINES.

Language Project Project guideline Standard guideline
Java Eclipse � Oracle

Hadoop � Oracle

Vaadin � Oracle

Spark � Oracle

Guava × Google

Guice × Google

Python Django � PEP8/257

Requests � PEP8/257

Pipenv × PEP8/257

Mailpile × PEP8/257

Pandas � Numpy

iPython � PEP8/257, Numpy

Pytorch � Google

into a taxonomy of five main categories: Content, Structure,
Formatting, Syntax, and Writing Style. If a rule does not fit

any of these categories, we put it into the Other category.

The rationale behind the taxonomy is that the approaches

evaluating comment quality can focus on a specific aspect

of comments they want to evaluate and improve. Categories

such as Content and Writing Style, are considered important by
Rani et al. in their work on evaluating Smalltalk comments [8].

According to Rani et al., the Content category contains the

rules that describe which type of information the comment

should contain while the Writing Style category contains

natural-language specific rules, such as grammar, punctuations,

and capitalization. We added three more categories, following

their methodology, to cover other aspects of comments. The

Formatting category deals with the rules related to indentation,
blank lines, or spacing. It often complements Structure cate-

gory conventions. The category Structure contains the rules

about organizing the text, or location of the information in

comments. For example, how the tags/sections/information

should be ordered in the comments. The Syntax category

focuses on the syntax to write a specific type of comments,

for instance, which symbol to use to denote comments. Then,

we analyze the frequency of these categories in the style

guidelines to answer the RQ1.

b) Adherence of comments to conventions (RQ2): The goal

of this RQ is to verify whether or not developers follow the

comment conventions, i.e., the rules identified in the previous
RQ, in practice in their projects. Currently, there are no

tools available that automatically check all comment types

against all rule types, therefore, from each project we manually

validate a sample of class comments against all class comment

related rules extracted from its standard and project-specific

guidelines shown in Table I (390 rules out of 600 rules). For

the scope of this work, we focus on the rule types that require

manual validation due to limited tool support i.e., all types of
rules other than Formatting, thus, we validate 270 rules against
the sample class comments.

We use the dataset by Rani et al. that provides sample class

166

Authorized licensed use limited to: University Bern. Downloaded on February 04,2022 at 13:04:47 UTC from IEEE Xplore. Restrictions apply.

comments of the selected projects shown in Table I [9]. They

selected a statistically significant sample of class comments

from all class comments of each project with 95% confidence

and 5% margin of error, resulting in a total of 700 class

comments for both languages. In case a comment follows a

particular rule, we label the rule as followed, otherwise as not
followed. There are often cases where a rule is not applicable
to the comment due to the unavailability of that information

in the comment, e.g., the rules verifying syntax, content, or

style of the version information in a class comment cannot

be checked if the version information is not mentioned in the

comment. For such cases, we label such rules as not applicable
to the comment. We exclude a few rules for now that cannot be

verified with the current dataset due to the abstract nature of

a rule, the unavailability of the symbols that denotes the class

comment, or code associated with the class, e.g., to verify the
Oracle rule “for the @deprecated tag, suggest what item to
use instead”, class comment alone is not enough and require

code of the class to verify the replacement item. We plan to

extend the dataset with more comment types and the required

data.

We measure how many comments follow a particular rule and

how many do not. One author labels the comments, and the

second author reviews the labeled comments. In cases where

they do not agree, the third author is consulted, and conflicts

are resolved using the majority voting mechanism (Cohen’s

kappa=0.80).

III. EARLY RESULTS

Fig. 1. Types of conventions in Java and Python guidelines

a) Comment conventions in Style Guidelines (RQ1): Figure 1

shows the total number of conventions for each standard

guideline (Oracle and Google) and project-specific guidelines

(including conventions from the standard guidelines) on the y-

axis. The x-axis indicates the ratio of conventions belonging

to a particular category from our taxonomy. Our results show

that the majority of style guidelines present more rules about

the content to write (Content) in comments, except for the

Google style guideline in Java, which contains more rules on

how to format and structure comments (Formatting, Structure).
Since the Oracle guideline is used as a baseline in several Java

projects, project-specific guidelines suggest few additional

comment conventions, and these conventions often either con-

flict with or clarify the standard guidelines. For example, the

conventions, such as line length limit and indentation with two
spaces, four spaces, or tab, are often among such additional

and conflicting rules across projects. Identifying such rules

and ensuring they are configured properly in tools can help

developers in following them automatically.

Figure 1 also shows the distribution of rule types for Python

style guidelines. Numpy and the projects following it (Pandas

and iPython) contain the most rules about what type of infor-

mation to write in comments and how to write it, compared to

other standard guidelines, such as those of Google, PEP, and

Oracle. For example, the Numpy guideline suggests writing

a short and extended summary of the class, usage examples,

notes and warnings in a class comment, and provides syntax

and style conventions to write these types of information.

Class comments of iPython and Pandas contain all of these

information types and follow the syntax conventions to write

them. Interestingly, developers write such types of information

in all other projects [4], [9] regardless of whether the project

guideline suggest or not, but they are writing these information

types in inconsistent ways. Previous comment analysis studies

for Java and Python also show that developers embed other,

different types of information in comments, such as Usage,
Expand, Rationale, or Pointer, but we do not find conventions
in the corresponding style guidelines (Google, PEP, Oracle) to

write such types of information [3], [4].

We observe that even though style guidelines are intended to

encourage and help developers to write good comments for

all code entities, comment conventions are scattered across

multiple sources, documents, and paragraphs. Thus, it is not al-

ways easy to locate conventions particular to one entity (class,

function, inline), causing developers to seek conventions using

online sources [10].

Finding. The majority of the style guidelines propose more content-
related conventions than other types of conventions, but they are
not easy to locate in the style guidelines, and do not always match
developer commenting practices.

Finding. The Numpy style guideline provides more rigorous content
conventions for comments compared to other style guidelines, such
as Oracle, PEP257, or Google.

b) Comment conventions in Style Guidelines (RQ2): Figure 2

shows the distribution of comments within each project that

follows rules, do not follow them, or to which the rules are

not applicable. For example, in Eclipse on average 27% of the

comments follow the rules, whereas 3% of comments violate

the rules, and 70% of the comments do not have enough

relevant information within them to check them against a rule.

High ratio of non applicable rules (shown in Figure 2) to

167

Authorized licensed use limited to: University Bern. Downloaded on February 04,2022 at 13:04:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Percentage of comments that follow rules, do not follow them, or to
which rules are not applicable.

selected comments indicates that the style guidelines suggest

various comment conventions, but developers rarely adopt

them while writing comments. For instance, the Oracle rules

in Java, such as “use FIXME to flag something that is bogus
or broken”, or “use @serial tag in class comment” are

not applicable on comments due to unavailability of FIXME

or @serial information in comments and thus showing the

developers interest in not adopting such rules. Similarly, some

rules in Python, such as “Docstrings for a class should
list public methods and instance variables” are also rarely

adopted.

Finding. Style guidelines suggest various comment conventions, but
developers do not or rarely adopt them while writing comments.

Fig. 3. Types of rules followed or not in Java and Python projects

Of the rules that are applicable as shown in Figure 3, writ-

ing style and content rules were more often followed than

syntax and structure rules, confirming previous results for

Smalltalk [8]. It shows that developers are interested in writing

informative and consistent comments.

Finding. Compared to Python, Java class comments violate rules less
often (as shown in Figure 3).

Finding. Class comments in Java and Python often follow writing
style and content conventions (80% of comments), but violate struc-
ture conventions (30% of comments).

As discussed before, some rules are often followed, while there

are others that are frequently violated. For instance, the syntax

rule “separate the paragraphs with a <p> paragraph tag” in

Spark is violated often. Similarly, in Pandas the rule “a few
sentences giving an extended summary of the class or method
after the short (one-line) summary” is often followed but the

rule “there should be a blank line between the short summary
and extended summary” is often violated. Such conventions

can be further investigated by surveying developers to know

the specific factors, such as the usage of linters for com-

ments, team strictness, or developer awareness behind these

explicit instances of rule adherence or violation. Although the

project-specific guidelines, as shown in Table I, provide few

additional conventions, these conventions are followed more

often in the projects compared to the conventions provided

by their standard guidelines. Specifically, 85% of Python

class comments and 89% of Java class comments follow the

project-specific conventions, whereas 81% of their comments

follow the conventions from the standard guidelines. One such

example is, the rule “Do not use @author tags” is specific

to Hadoop and in contrast with the Oracle style guideline,

but it is always followed in Hadoop comments. It would be

an interesting future work to explore the reasons behind such

conventions.

Finding. Project-specific class comment conventions are followed
more often than the conventions suggested by the standard guidelines.

IV. IMPLICATION & RELATED WORK

Impact of commenting conventions. Coding style guidelines
impact program comprehension and maintenance activities.

However, not all conventions from the guidelines have the

same impact on these activities. Smit et al. [11] ranked 71

code conventions that are most important to maintainable

code. However, they accounted only for missing or incomplete

Javadoc comments on public types and methods, and did

not account for other comment-related conventions, especially

about their content. Similarly, most previous work has focused

on building tools for formatting and naming conventions for

code entities, while being very limited on comment conven-

tions [2], [13]. We provide a dataset of 700 labeled class

comments and 600 comment conventions (taxonomy) for Java

and Python. This dataset can help researchers rank the specific

comment conventions to find out their importance, and impact

on the program comprehension and maintenance activities, and

thus help in developing comment quality tools based on the

supervised machine-learning approaches.

Comment generation. To reduce developer effort in writing

comments, various researchers have proposed to generate

168

Authorized licensed use limited to: University Bern. Downloaded on February 04,2022 at 13:04:47 UTC from IEEE Xplore. Restrictions apply.

comments automatically. Moreno et al. proposed a template-

based approach to generate class comments in Java [14].

Given the importance of including developer commenting

practices in such approaches, and the impact of a template on

developers [8], our results can help researchers design such

templates more carefully.

Adherence of comment conventions. Previous works, in-

cluding Bafatakis et al. and Simmons et al., evaluated the

compliance of Python code to Python style guidelines [15],

[12]. However, they included only few comment conventions

and missed many other content and writing style conventions.

In our study, we find various comment conventions, such

as grammar rules, the syntax of writing different types of

information that developers often follow, but which are not

covered in such studies. Rani et al. measured the adherence

of Smalltalk class comments to the default comment template

and found that developers follow the writing conventions

of the template [8]. Java and Python do not provide any

default template to write comments but support multiple style

guidelines for each project, thus collecting and verifying their

comment conventions against comments is more tricky. We

study diverse projects in Java and Python and found that

developers follow writing and content conventions more than

other types, thus confirming the results of Rani et al. for

Smalltalk.

V. CONCLUSIONS

Given the importance of code comments and consistency con-

cerns in projects, we study various style guidelines and diverse

open-source projects in the context of comment conventions.

We highlight the mismatch between what conventions the style

guidelines suggest for class comments, and how often devel-

opers adopt and follow them, and what conventions developers

follow in their class comments but which are not suggested

or mentioned by the style guidelines. However, identifying

automatically this mismatch is not yet fully achieved. This

indicates the need to further automate the software documen-

tation field. Our results also indicate the need to conduct

extensive studies on various linters or quality assessment tools

to know the extent they cover various comment conventions

and improve them for the missing conventions. In this di-

rection, we provide a dataset of labeled conventions against

comments, and the methodology to extract conventions from

the guidelines and verify them against comments. This can

help in expanding the scope of the work. We plan to expand the

study to other types of comments, conventions, and program-

ming languages to generalize the current results and design

the tools accordingly. Having the tools to automatically assess

the documentation quality at each development stage can help

developers in maintaining overall high-quality documentation.

VI. ACKNOWLEDGEMENT

We gratefully acknowledge the financial support of the Swiss

National Science Foundation for the project “Agile Software

Assistance” (SNSF project No. 200020-181973, Feb 1, 2019 -

Apr 30, 2022). Bergel is also grateful to Lam Research and the

ANID FONDECYT Regular 1200067 for partially sponsoring

the work presented in this paper.

REFERENCES

[1] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On
the comprehension of program comprehension,” ACM TOSEM,
vol. 23, no. 4, pp. 31:1–31:37, Sep. 2014. [Online].
Available: http://mobis.informatik.uni-hamburg.de/wp-content/uploads/
2014/06/TOSEM-Maalej-Comprehension-PrePrint2.pdf

[2] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2014. New York, NY, USA: ACM, 2014, pp. 281–293.

[3] L. Pascarella and A. Bacchelli, “Classifying code comments in Java
open-source software systems,” in Proceedings of the 14th International
Conference on Mining Software Repositories, ser. MSR ’17. IEEE
Press, 2017, pp. 227–237.

[4] J. Zhang, L. Xu, and Y. Li, “Classifying python code comments based
on supervised learning,” in Web Information Systems and Applications -
15th International Conference, WISA 2018, Taiyuan, China, September
14-15, 2018, Proceedings, ser. Lecture Notes in Computer Science,
X. Meng, R. Li, K. Wang, B. Niu, X. Wang, and G. Zhao, Eds., vol.
11242. Springer, 2018, pp. 39–47.

[5] “Oracle documentation guideline,” verified in Aug, 2021. [Online].
https://www.oracle.com/technetwork/java/javase/documentation

[6] “Python documenation guideline,” verified in Aug, 2021. [Online].
https://www.python.org/doc/

[7] “Google style guidelines,” verified in Aug, 2021. [Online]. https:
//google.github.io/styleguide/

[8] P. Rani, S. Panichella, M. Leuenberger, M. Ghafari, and O. Nierstrasz,
“What do class comments tell us? An investigation of comment
evolution and practices in Pharo Smalltalk,” Empirical Software
Engineering, vol. 26, no. 6, pp. 1–49, 2021.

[9] P. Rani, S. Panichella, M. Leuenberger, A. Di Sorbo, and O. Nierstrasz,
“How to identify class comment types? A multi-language approach for
class comment classification,” Journal of Systems and Software, vol.
181, p. 111047, 2021.

[10] P. Rani, M. Birrer, S. Panichella, M. Ghafari, and O. Nierstrasz,
“What do developers discuss about code comments?” in 2021 IEEE
21st International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2021.

[11] M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia, “Maintainability
and source code conventions: An analysis of open source projects,”
University of Alberta, Department of Computing Science, Tech. Rep.
TR11, vol. 6, 2011.

[12] A. J. Simmons, S. Barnett, J. Rivera-Villicana, A. Bajaj, and R. Vasa,
“A large-scale comparative analysis of coding standard conformance
in open-source data science projects,” in Proceedings of the 14th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2020, pp. 1–11.

[13] M. Arai, “Development and evaluation of eclipse plugin tool for learning
programming style of java,” in 2014 9th International Conference on
Computer Science & Education. IEEE, 2014, pp. 495–499.

[14] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. L. Pollock, and
K. Vijay-Shanker, “Automatic generation of natural language summaries
for Java classes,” in IEEE 21st International Conference on Program
Comprehension, ICPC 2013, San Francisco, CA, USA, 20-21 May, 2013,
2013, pp. 23–32.

[15] N. Bafatakis, N. Boecker, W. Boon, M. C. Salazar, J. Krinke, G. Oznacar,
and R. White, “Python coding style compliance on stack overflow,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 2019, pp. 210–214.

169

Authorized licensed use limited to: University Bern. Downloaded on February 04,2022 at 13:04:47 UTC from IEEE Xplore. Restrictions apply.

