2503.21455v1 [cs.SE] 27 Mar 2025

arxXiv

Code Review Comprehension: Reviewing Strategies
Seen Through Code Comprehension Theories

Pavlina Wurzel Gongalves
Department of Informatics
University of Zurich
Zurich, Switzerland
p-goncalves @ifi.uzh.ch

Diomidis Spinellis
Department of Management Science and Economy
Athens University of Economics and Business
Athens, Greece
dds@aueb.gr

Abstract—Despite the popularity and importance of modern
code review, the understanding of the cognitive processes that
enable reviewers to analyze code and provide meaningful feed-
back is lacking. To address this gap, we observed and interviewed
ten experienced reviewers while they performed 25 code reviews
from their review queue. Since comprehending code changes is
essential to perform code review and the primary challenge for
reviewers, we focused our analysis on this cognitive process. Using
Letovsky’s model of code comprehension, we performed a theory-
driven thematic analysis to investigate how reviewers apply code
comprehension to navigate changes and provide feedback.

Our findings confirm that code comprehension is fundamental
to code review. We extend Letovsky’s model to propose the Code
Review Comprehension Model and demonstrate that code review,
like code comprehension, relies on opportunistic strategies. These
strategies typically begin with a context-building phase, followed
by code inspection involving code reading, testing, and discussion
management. To interpret and evaluate the proposed change,
reviewers construct a mental model of the change as an extension
of their understanding of the overall software system and contrast
mental representations of expected and ideal solutions against
the actual implementation. Based on our findings, we discuss
how review tools and practices can better support reviewers in
employing their strategies and in forming understanding.

Data and material: https://doi.org/10.5281/zenodo.14748996

Index Terms—Human Factors, Code Review, Code Compre-
hension, Code Review Strategies

I. INTRODUCTION

Modern code review is a widely used practice to ensure
the quality of code contributions [41, 23, 16]. Typically,
developers manually review code changes through an informal,
tool-based, and asynchronous process [23, 41]. Reviewing
code changes is seen as beneficial to identify defects and find
alternative solutions, improve transparency in the team, and
share knowledge among developers [2]. Despite its benefits,
code review is time-consuming [2], challenging to adopt [5],
and costly to sustain [35]. Therefore, researchers have been
focused on investigating ways to support developers in per-
forming code reviews efficiently and effectively.

Pooja Rani
Department of Informatics
University of Zurich
Zurich, Switzerland
rani @ifi.uzh.ch

Margaret-Anne Storey
Department of Computer Science
University of Victoria
Victoria, Canada
mstorey @uvic.ca

Alberto Bacchelli
Department of Informatics
University of Zurich
Zurich, Switzerland
bacchelli @ifi.uzh.ch

Code comprehension [44, 24], particularly comparative code
comprehension [34], is the most important competency review-
ers need [52] and simultaneously their greatest challenge [2].
However, there is little insight into how developers form their
understanding during code review and use it to provide feed-
back. Understanding these aspects of individual code review
performance can inform the design of code review tools and
practices [51] that support reviewers’ construction of the men-
tal models [47] and in following effective individual reviewing
strategies [30]. Human-centric design can improve developers’
productivity in code review and their experience when facing
common challenges, like code change complexity [29].

In this study, we investigate in detail how developers form
and use their understanding of the code change under review.
Previous work has studied the behavior of reviewers using
various methods, ranging from controlled experiments [22,
21, 18], to eye-tracking [48], and analyses of traces left
in software repositories [9, 36, 21]. These studies describe
reviewing mostly as linear reading of code [21, 48]. However,
the strategy for reviewing large changes remains unexplained
(e.g., in terms of reading order [6]). These studies often involve
participants reviewing small code changes from unknown sys-
tems and lack a real context, purpose, and interactions among
authors and reviewers. As an alternative, we selected observa-
tion accompanied by think-aloud protocols and interviews to
capture the reviewer’s decisions or comprehension strategies
in real time [1, 49]. We observed ten experienced developers—
recommended by others as great reviewers—while performing
25 code reviews in their work environment to gain insight into
their reviewing strategies. We performed an in-depth theory-
driven qualitative analysis to code and interpret the collected
data, using several theories from code comprehension and
psychology [32, 38, 40, 3].

As a result of our observations, we contribute with an
extension of Letovsky’s code comprehension model [32]: a
Code Review Comprehension Model. Our model describes and

https://doi.org/10.5281/zenodo.14748996

enhances our understanding of how reviews are performed
and of the role of code comprehension in shaping the review
process. The model highlights the opportunistic nature of code
review comprehension strategies employed by reviewers to
deal with review complexity, e.g., scoping down the review
or employing other code inspection strategies apart from
linear reading, such as chunking or segmenting code based
on reviewing difficulty. We also identify the knowledge and
information sources that help reviewers navigate code, con-
struct a mental model of the pull requests (PRs), and provide
feedback by comparing their mental model of the PR to ideal
and expected solutions. Finally, based on our observations and
analyses, we propose guidelines for performing code review
and designing better human-centered review tools.

II. BACKGROUND

We provide details on theories and findings we used in the
qualitative analysis to code and interpret the data.

Opportunistic strategies to code comprehension. Code com-
prehension research has observed, described, and interpreted
code navigation strategies aimed at understanding a code
artifact [10, 11, 13, 24]. Accordingly, researchers have pro-
posed numerous comprehension models to capture the com-
prehension process [10, 44, 32, 49]. For instance, researchers
found that developers initially take a top-down comprehension
approach to gain an overall big picture and then move to
detailed code snippet [10]. The top-down approach relies
on applying domain knowledge, knowledge of programming
plans, and rules of programming discourse to interpret specific
implementations of programmatic solutions. Developers also
use other strategies for code navigation, for example, bottom-
up [50, 44] or following the control flow [37].

Developers opportunistically choose the strategies to com-
bine the top-down and bottom-up processes and seek the
information relevant to their task to form understanding most
efficiently and update their knowledge through the comprehen-
sion process [31, 32]. In addition to understanding code, code
comprehension is a fundamental step in supporting subsequent
software development activities [50]. Relevant to our study,
code comprehension also determines how developers review
code, the review outcomes, and the artifacts created in the
process. We aim to understand which approaches are used and
how the mental model of the reviewed code change is formed.

Role of experience in code review comprehension. Code
review is based on forming an accurate mental model of
the change and ensuring maintainability by other develop-
ers [52]. Developers achieve understanding through recogni-
tion of programming plans, i.e., stereotypical implementations
of goals [44]. Reviewers’ experience is crucial to recognize
and correct programming patterns into readable and maintain-
able code: Novice developers tend to have more difficulty
understanding a program [7], gaining the overall picture,
and identifying programming patterns [27]. Consequently,
adherence to coding conventions and programming patterns
ensures also adherence to representations shared throughout

the developer community and thus, fitting the mental schemas
of other developers. In the analysis, we have viewed reviewers
as gatekeepers ensuring code understandability and maintain-
ability by promoting adherence to these shared standards.

Code Review Strategies. Past research has provided evidence
that reviewers often perform ad hoc reviews [12]: They
“just read the code” or adopt an unsystematic approach that
relies on personal strategies to navigate code and identify
defects [12, 48]. Baum et al. [6] found that reviewers mostly
navigate the files linearly following the order offered by the
review tool. Fregnan et al. [21] found a linear decline in
the number of comments reviewers leave as the files appear
later in a change set, and measured diminished developers’
effectiveness at detecting defects in files presented last by
review tools. In eye-tracking experiments, reviewers were
found to perform reviews mostly linearly, splitting the review
into a scanning phase (where reviewers first get an overview
of the code) and a detailed phase (where they return to look
into specific code segments) [48].

Although review navigation seems to be often linear, this
may not be the case for more complex reviews. In fact, com-
plex changes are more challenging to review [29] and the order
in which reviewers choose to review them remains largely
unexplained [6]. For example, Spadini et al. [45] indicate that
reviewers might choose to follow diversified review strategies,
such as performing test-driven reviews. Therefore, in our study
we observe reviews of changes of varying complexity to better
understand how complexity may affect the process.

Code comprehension and code review. Similarly to code
comprehension, it seems reasonable to expect that reviewers
performing ad hoc reviews [12] may shape their reviewing
process through a combination of strategies and opportunistic
decisions that aim to optimize for both effective understanding
and efficient reviewing. However, code review requires deeper
engagement of higher-level cognitive processes (e.g., decision
making and analysis) than code comprehension alone due to
the need to inspect the code changes for quality aspects [20].

Code review is a specific context for using code comprehen-
sion, as understanding occurs within an environment where the
changes to the software system are iterative (reviewers repeat-
edly comprehend the same artifact), incremental (they com-
prehend a modification of a likely partially known software
system), and interactive (the comprehension is supported by
interactions with the author and other colleagues). Reviewing
may require developers to work with other software artifacts,
such as the PR discussion, issues, testing tools, architecture,
and design documentation. Therefore, comprehension models
that address only code navigation may be insufficient to fully
capture code review comprehension.

III. METHODOLOGY

Our study investigates how software developers perform
code reviews through the lens of code comprehension theories.
As the main tool for approaching the data and informing
the research questions, we use Letovsky’s model of code

Knowledge base Information sources
Code

comprehension

|

Mental Model

Fig. 1. Letovsky’s Model of Code Comprehension [32] - Code comprehension
is an assimilation process using knowledge base and information sources to
create a mental model of the code.

comprehension [32] (shown in Figure 1). The model is based
on Piaget’s model of cognitive development [38], which posits
that learning is an activity with a scope, as the ability to learn
in a certain moment has a limit of information that can be
effectively processed.

A. Research Questions

We address three research questions. First, we ask:

RQ;. How do reviewers scope code review comprehension?

Although reviews are often seen as unsystematic [12, 48],
their reliance on code comprehension [2] suggests that re-
viewing may follow opportunistic strategies as code compre-
hension does. Understanding review strategies and the deci-
sions in their selection, particularly when handling complex
changes [6], can provide valuable insights on how to support
reviewers to perform effective code reviews and inform the
design of more human-centered review tools. In RQ2, we focus
on the Code Comprehension component of Letovsky’s model:

RQs. What strategies do developers use to perform code
review?

In Letovsky’s model of code comprehension [32] (see
Figure 1), code comprehension is accompanied by other three
components of the model: (1) the information sources includ-
ing the code artifact being understood and (2) the knowledge
base, which interact in the code comprehension process to
create (3) the mental model of the code artifact. To capture
how code comprehension is used in code reviews, we also ask:

RQg3. What are the roles of information sources, knowledge
base, and mental models in the code review process?

B. Data Collection

Given that the cognitive processes underlying a code review
are not directly observable, we use observation, interviewing,
and think-aloud protocols to capture the reviewer’s cognitive
process similarly to other studies looking into code com-
prehension or developers’ approaches to perform engineering
tasks [1, 49]. Throughout the paper, participants and specific
review sessions are referenced using the format [participant
ID][review number] (e.g., P2R3).

a) Recruitment of Participants: Following estimates for
grounded theory studies, we expected to need 20 to 30 obser-
vations to reach saturation [14]. We used purposeful sampling
method [4] to achieve high variety in the data by observing
1) reviews in a real-world context, thus observing more varied
PRs, 2) reviews of varying complexity and 3) reviews in both
OSS community and in in-house software development teams.

We recruited reviewers recommended as great reviewers or
who had at least ten years of code review experience. This
approach allowed us to observe experienced reviewers with
purposeful decision-making in code reviews who have high
knowledge of programming patterns and are recognized by
other people as insightful. We specifically obtained six review-
ers through their companies—four from an open-source soft-
ware development company (participants P1, P3, P4, P5) and
two from a closed-source development company (P8 and P10).
We asked developers within these companies to recommend
great reviewers, and researchers only received contact details
for those who had been recommended and agreed to partici-
pate. Additionally, four reviewers were contacted individually:
P2, an experienced author of open-source software (OSS) and
of technology books and academic publications on software
quality; P6, an experienced OSS reviewer recommended by
P2; P7, a software engineer at a big technological firm who
shares their coding and reviewing practices on their YouTube
channel; and P9, an insightful and experienced reviewer known
from a previous study. The reviewers typically held leadership
and mentoring roles in their teams, had over ten years of
professional experience, and reviewed code daily (see Table I).

b) Review&lInterview sessions: We collected data in
three phases — (1) observation of code review sessions, (2)
exploratory interview, and (3) a demographic survey. We
conducted each session through an online video call that lasted
approximately one hour. With the consent of the participants,
we recorded each session for subsequent data analysis. During
each session reviewers performed both a short and a long
review on PRs from their review queue (at work or in their
open source project). While reviewing, participants used a
think-aloud method. The interviewer played a passive role,
mainly intervening only to facilitate the think-aloud. After
each review, the researcher conducted a short semi-structured
interview to clarify the observations — establishing the se-
quence of actions/steps in the review, reasoning and choices of
the reviewers and differences among participants. These areas
were captured in a non-binding interview guide. Following
these sessions, the participants completed a short demographic
survey.

As a result of our data collection process, we acquired rich
data from 25 review sessions. Table II details the reviewed
changes: Their sizes ranged from 2 to 34,520 changed lines of
code, and the reviews were conducted using GitHub (N=18),
GitLab (N=2), Phabricator(N=2), or Gerrit(N=3). We observed
15 reviews in open-source and 10 in closed-source contexts. In
most reviews, our participants ended their task by requesting
changes (N=11) or providing comments (N=9), while they
directly approved a minority (N=5).

c) Transcription: We transcribed the observations and
interviews to enable the subsequent analyses. For the ob-
servations, we created the transcripts based on what was
vocalized by the reviewers in their think-aloud and by ac-
tions performed in the reviewing platform. As a validation
of this transcription process, the second author of the study
compared three transcripts (P2R2, P4R1, P9R1) against the
non-anonymized observations, providing feedback to the first
author and pointing out additional insights. These were used
to improve and update the other transcripts.

C. Data Analysis

Through familiarizing with the collected observations and
interviews, we confirmed that themes of understanding and
comprehension were prominent and that code comprehension
theory, particularly Letovsky’s model of code comprehen-
sion [32], provides us with an effective vocabulary to capture
the scope of our observations.

Therefore, we used Letovsky’s model complemented by
other models, terms and theories from code comprehension
and psychology [38, 3] to produce the coding schema pre-
sented in Figure 2, through which we performed a theory-
driven thematic analysis [8].

o Letovsky’s code comprehension model [32] (Figure 1): cap-
tures code comprehension as an interplay of information
sources and knowledge base through which the developer
creates a mental model representing the code artifact.
Mental models consist of the specification, annotation and
implementation layer.

e Piaget’s model of cognitive development [38]: posits that
learning is an activity with a scope that happens in achiev-
able increments rather than being formed as a complete and
comprehensive understanding of a new input.

o Self-discrepancy theory [3]: interprets human distress as a
result of a discrepancy between their self perception and
their own and societal ideals and expectations. We applied it
to interpret how reviewers use discrepancies between the PR
and their expectations and ideals to interpret and evaluate
the code change.

The second author validated the text excerpts using tran-
scripts from three review sessions (P2R2, PAR1, P9R1). Within
the concept-related excerpts, we proceeded with a bottom-up
coding [8] to understand how these concepts can be described
and understood in the code review context. Subsequently, we
used the research work mentioned in Section II as a basis to
interpret the data.

The analysis aimed to reach code saturation [25]. Therefore,
the themes reported in the paper represent a coding structure
that was stable and repetitive by the end of the analysis.

We performed the analysis using the qualitative research
software NVivo 14. The first author was the person collecting
and analyzing the data. To support the validity of the findings,
we used peer debriefing [15]. Theories and preliminary results
were regularly discussed with the second author who also
performed checks for validity of transcripts and first-level
coding. We discussed results and interpretations among all the

Piaget's model of cognitive development !

Code Review

Comprehension e
> Mental model Actual Specification
> Knowledge base > Ideal Annotation

> Information sources L» Expected

Self-discrepancy theory

Implementation

—> Process

Fig. 2. Coding schema used to structure and code the data according to the
selected code comprehension and psychological theories.

authors at two major milestones: (1) during the analysis and
(2) once the findings were interpreted and reported.

Our replication package includes the observation and inter-
view transcripts, interview guide, coding schema, and other
documents [53].

D. Ethics and Data Handling

The Human Subjects Committee of the home university of
the first, second, and last author approved the study design.
Reviewers signed an informed consent before participating
in a monitored review session. Observations including par-
ticipants’ screens and faces were temporarily stored on the
university server to create anonymized behavioral transcripts.
The observed code came from OSS projects or was shared
with the permission of the project/team lead, given no sensitive
information was shared in the recorded code.

E. Limitations

The scope of the study focused on describing aspects
related to code comprehension, using observation of reviews
performed by experienced reviewers performed in a real-world
context. There are limitations to this focus.

Being the first observational study of cognitive processes in
code review, our data collection was initially exploratory and
focused on aspects of code comprehension only in the analysis
phase. We did not delve deeply into other key aspects of code
review, such as reviewers’ interactions—a possible rich field
for further exploration.

We conducted the observations via a video call. We asked
participants whether their review process was the same as
usual. Only P2 mentioned they were highly aware of being
observed and possibly made their review more thorough than
usual, suggesting a possible influence of the Hawthorne ef-
fect [17]. To capture natural strategies, we avoided interrupting
the reviewers, keeping the clarifications for the end of the
sessions. This approach allowed us to observe the higher level
flow, rather than to investigate details of each decision made,
e.g., reasoning for writing individual comments.

The study participants are experienced reviewers with es-
tablished reviewing strategies and reasoning. Therefore, this
data does not represent the strategies of novice reviewers.

TABLE I

DESCRIPTIVE DEMOGRAPHICS OF THE STUDY PARTICIPANTS

Participant Experience (years) Team/Project Frequency of
Role Gender . - R -
ID programming ‘ reviewing | tenure (years) | programming ‘ reviewing
Pl Technical Lead Female 17 17 3 | Daily Daily
P2 Code base author ~ Male 37 10 1 | Weekly Monthly
P3 Project Lead Male 17 5 3 | Daily Daily
P4 Team Lead Male 16 15 10 | Daily Daily
P5 Chose not to disclose
P6 Core contributor ~ Male 14 16 13 | Daily Daily
P7 Chose not to disclose
P8 Senior developer ~ Male 3 2 1 | Daily Daily
P9 Team Lead Male 11 10 4 | Daily Daily
P10 Team Lead Male 15 9 2 | Daily Daily
TABLE II
DESCRIPTIVES OF THE REAL-WORLD REVIEWS CONDUCTED BY OUR PARTICIPANTS DURING THE OBSERVATIONS.
Review Number of
D Tool Code Iteration(*) Draft Verdict reviewers | files changed lines
added | removed
PIR1 Gerrit CSS 2nd x Request changes 5 3 97 86
PIR2 GitHub 0SS Ist % Comment 3 1 15 21
PIR3 Gerrit CSS 1st % Request changes 4 6 174 2
P2R1 GitHub 0SS 1st % Request changes 1 13 1,366 76
P2R2 GitHub [ONN 2nd % Accept 1 8 376 45
P2R3 GitHub 0SS 3rd % Request changes 1 6 109 39
P2R4 GitHub 0SS 1st % Accept 1 1 13 4
P3R1 GitHub 0SS 1st % Accept 1 1 4 4
P3R2 GitHub 0SS Ist v Request changes 1 7 369 98
P4R1 GitHub 0SS Ist % Accept 1 1 1 1
P4R2 GitHub 0SS Ist v Comment 1 3 158 92
P5R1 Gerrit 0SS Ist % Request changes 3 12 79 0
P5R2 GitHub 0SS 2nd v Comment 2 36 3,848 40
P6R1 GitLab 0SS Ist ['4 Comment 1 4 49 6
P6R2 GitLab 0SS Ist % Comment 1 6 360 3
P7R1 Phabricator ~ OSS Ist % Request changes 3 3 3 0
P7R2 Phabricator ~ OSS 3rd+ % Comment 6 5 57 36
P8R1 Github CSS 3rd+ E 3 Accept 2 1 41 0
P8R2 Github CSS 3rd+ % Request changes 3 17 535 2
PI9R1 Github CSS Ist % Comment 1 17 | (**)17,030 | (**)17,490
PO9R2 Github CSS Ist % Request changes 2 28 446 165
PO9R3 GitHub CSS 1st ® Comment 2 56 842 1,177
PIOR1 Github CSS 3rd+ % Request changes 3 19 636 9
P10R2 Github CSS 2nd % Request changes 2 1 7 5
P10R3 Github CSS Ist x Comment 3 1 1 5
(*) Iteration number for the participant as a reviewer
(**) The code change was extremely large due to the inclusion of a large autogenerated .yaml file.
We observed reviews done on four online platforms IV. RESULTS

(GitHub, GitLab, Gerrit, and Phabricator). We did not observe
reviews in other contexts, such as IDE-integrated code review
tools, reviews through emails, or in-person reviews. Therefore,
our observations may not generalize to those contexts.

Since the data was collected and mainly analyzed by the
first author, the results are shaped mainly by her knowledge
and expertise. The second author validated the material on
two separate occasions for coding and transcription quality.
Furthermore, the results and interpretations were repeatedly
discussed with all other co-authors in individual and group
meetings and updated accordingly.

The 25 reviews performed by ten expert reviewers led to
a total of 14 hours and 42 minutes of recorded observations
and follow-up interviews. The coding led to the definition of
846 codes captured in 3,792 unique references. The replication
package also includes the list of themes from the analysis [53].

Our analysis showed that the Letovsky’s code comprehen-
sion model [32] was efficient, yet not complete enough to
cover the case of code review comprehension. Therefore, we
propose an extended model to fill this gap: the Code Review
Comprehension Model (CRCM), as depicted in Figure 3.
Through our new model, we describe the individual compo-
nents (Code Review Process, Information Sources, Knowledge
Base, and Mental Model) alongside their function. While

Knowledge base Information sources

Supply Evaluate

Code Review
Comprehension

Construct I

Mental Model

Fig. 3. Code Review Comprehension Model - Code Review Comprehension
uses opportunistic strategies to enrich information sources through identifying
issues, commenting, and proposing improvements.

Letovsky’s model views code comprehension as combining
knowledge base and information sources to form a mental
model of the code, CRCM also integrates more recent code
comprehension theories like constructivism [40] (i.e., compre-
hension is a learning process that updates the knowledge base)
and views code review comprehension as an opportunistic
process shaped by the purpose and usage of the understand-
ing [49] (i.e., to understand code changes, select an appropriate
reviewing strategy, and provide feedback). In the following
subsections, we present detailed results for each component
of the CRCM, their interactions, and the review scope.

A. RQI: Scoping Code Review Comprehension

The goal of RQI is to explore the limits reviewers set for
their review. We define review comprehension scope as the
completeness and depth of the code review comprehension
process. We observed reviewers employing four distinct ways
of scoping their review: they performed (1) full reviews, i.e.,
the reviewers achieved a complete understanding of the code
changes, (2) reviews focused on specific aspects of the code
change (e.g., high-level rationale coherence and areas related
to their expertise), (3) partial reviews of sections of the change
(sometimes due to the review being terminated prematurely),
and (4) shallow reviews where only a superficial understand-
ing was reached, and reviewers based their judgment on
external factors (e.g., sufficient testing and the expertise and
responsibility areas of the other involved reviewers; as P4
explained: “If the PR is really really big, I trust in the CL
I trust if all the tests are passed I understand that the changes
that are being added are not affecting the current behavior.”).

Reviewers reported that several factors—related to the na-
ture of PR-based code review and code complexity—influence
the completeness and thoroughness of their reviews.

Given that code review is iterative and incremental in
nature, a full understanding of the code changes can be grad-
ually achieved through multiple review iterations. Reviewers
use these characteristics to break up the entire review into
manageable steps and to benefit from the expectation of further
review iterations. As P5 noted: “I don’t need this knowledge
answered right now. I need this to be answered before I

approve, but I can live without it today.” Each review iteration
also allowed reviewers to narrow the scope of the review.
When reviewing the same PR for the third time (P2R2), P2
explained: “I can take shortcuts. If [the file] has no comments,
I will ignore it, I will not really review it. And this thing
converges, right? Because more and more files enter the state.”

Code review is also interactive: Reviewers and authors can
support each other in understanding the code. The collective
comprehension of the author and reviewers can have more
importance than an individual reviewer reaching full com-
prehension of the PR. Reviewers consider the added value
their review can provide, the expertise of other reviewers, and
the opportunity to seek clarifications from the author. As P9
puts it: “If this was application code and I didn’t understand
anything, I would definitely either make sure that I understand
or ask about it. Or there is another reviewer who can go a little
bit deeper than me.”

The complexity of the change under review fundamentally
contributes to the need to scope their review comprehension.
When we asked P5 why they reviewed only a part of the
change, they explained: “I have to ... it is impossible to fit [it]
into my head.” Small changes require less comprehension or
reviewer involvement; as P2 put it: “There are not many things
that can go wrong in one line of code and the automated tools
would have caught most of the issues already.”

B. RQ2: Strategies Reviewers Use To Perform Code Review

RQ- explores the strategies reviewers use to understand and
review the code change. The code review process, similar
to code comprehension, is opportunistic. Reviewers combine
various information sources with their knowledge base and ex-
isting mental models to understand the code change, evaluate
the PR, and provide feedback. They deliberately select their
reviewing strategy, accounting for the change’s complexity,
aligning with their current priorities and review scope.

Understanding in code review is reached through multiple
activities, presented in Figure 4 (a) — with activities numbered
and color-coded to guide the reader through the results.
Figure 4 (b) uses this color scheme to represent the sequence
of activities across review sessions, ordered by change size.

In most reviews (N=23), the reviewer began with a (IJ con-
text building phase, then proceeded to (II) code inspection, and
concluded by submitting feedback, making a decision, and
potentially merging the change. During the code inspection,
reviewers (ILDM) manage discussions, perform code
reading using various strategies, and perform testing.
While reading code, we observed that reviewers tended to
follow a linear reading approach for smaller changes
(up to PIR3 - 6 files changed, 176 lines of code); while,
for larger changes, they employed alternative strategies, such
as difficulty-based reading or chunking,

which enabled them to split the review into manageable units.

Context Building| This step starts with reviewers famil-

iarizing themselves with the PR title and description, and
gathering other information sources (mentioned there or in the
PR history and discussion; see Section IV-C1 for more details).

Code Inspection

Context Building e

Discussion
Management

(101
Decision

ILT 1

Code Reading Testing

II.CR.[)'

Linear Diﬂicullv-bassdh Chunking
- One View - Easy-first - Unit

- Scanning - Core-based - Issue

- Top-Bottom - Commit

- Comment
- File

(a) Activities reviewers combine to reach an understanding and create a
reviewing strategy. Each activity is described in the text using its number
and colored label.

Review ID [Strategy
P4R1

1
P10R3 1
P3R1 1
P10R2 1
P2R4 !
P1R2 1
P8R1 1 ILCRL
P7R1 1 ILCR.L
1
1
1
1
1
1

IL.CR.L

IL.CR.L

IL.CR.L

IL.CR.L

IL.CR.L

IL.CR.L

PIR1
P4R2
P6R1

ILCRL ILCRD s
P7R2
P2R3

ICRL
ILCRL
PI1R3 ILCRL

P6R2 1 ILCR.D

P3R2 1 ILCRL ILCR.D
P2R2 IGRL m IGRL
P5R1 1 ILCR.D ILCR.D
P2R1 1
P8R2
P9R1
P10R1 ILCR.C
P9R2 . n
P5R2 n
P9R3

ILCR.L

IL.CR.C
nr

IL.CR.L

IL.CR.L

(b) Composition of these activities in each review session. The color legend
corresponds to Figure 4 (a). Some activities can be employed in parallel
(represented by split-color fields.) The reviews are ordered by size - smallest
to largest code changes.

Fig. 4. Code Review Process Strategies

This initial step gives them an idea about the completeness of
the available information and the Git hygiene [26] of the PR.
It helps reviewers identify issues needing attention, actions
required from them, and open questions. The context-building
phase also enables reviewers to build a preliminary mental
model of the PR and assess its complexity. Furthermore,
reviewers form expectations about the PR and its ideal im-
plementation, which they compare with what they see during
the code inspection. In the team of P10, the PR descriptions
can also explicitly include the PR acceptance criteria or
suggestions for the reviewing strategy. For instance, P10R1
included a suggestion to review the PR commit by commit,
which P10 followed: “I would at least give it a try without

even thinking about it.” Yet, the benefits of this phase are
compromised when the information sources are not provided.
Reviewers reduced the need for context building during the
review session by being part of creating issues before the
review or holding planning and alignment meetings with their
team and the change’s author. In P2R2 and P9R2 the context-
building phase was skipped entirely due to a high availability
of the context. Five reviewers (P2, P5, P7, P8, P9, and P10)
underlined the importance of having a pre-alignment with the
PR’s author for review efficiency. As P10 explained: “We
already pre-agreed on solutions so I don’t need to challenge so
much. It’s more like does this match my expectation of what
would happen or not? So [the review] is much smoother.”

(ORI Eit. This phase, shown in Figure 4(a), con-

sists of discussion management, code reading, and testing:

. While reviewers mostly
wrote comments while performing Code Reading, some of the
reviewers allotted a specific slot in their review to read through
the available discussion and interact with the comments of
other reviewers. This step was used to see what other reviewers
and the author have already addressed, identify areas of agree-
ment, and identify where they might add a new perspective.
As P5 put it: “maybe the discussion already explains to me
that I shouldn’t review it right now, because somebody already
went deep into this, and my time is not even needed right now
here.”

. The strategies discussed here are in-
spired by Heinonen et al. [24]. We observed three approaches:
linear reading, difficulty-based reading, and chunking.

(Linear). Reviewers use this strategy with reviews
of manageable size. As P2 puts it: “There are not many things
that can go wrong in one line of code”. Linear reading was
the main strategy used in small reviews until the review of
PI1R3 (176 changed LOC), as shown in Figure 4 (b).

. Reviewers employed this strat-
egy when review size increased and they had to deal with the
growing complexity. Reviewers prioritize what to review based
on reviewing difficulty. Table III summarizes examples of code
that reviewers deemed difficult or easy to review. Reviewers
also referred to these two categories as areas where they (do
not) need to invest significant effort and energy. The difficulty-
based reading appears in two forms: (1) the easy-first approach
(P3R2, P6R1, PO9R1, P9R2, PO9R3) where reviewers first “get
rid of easy stuff” then focus on the parts that require more
effort, and (2) the core-based approach (P5R1, P6R2) where
reviewers began with what some of them refer to as “the core
of the change,” then follow the data and execution flow to
understand how the core changes were used in the code.

. This approach also deals with in-
creasing complexity and can exist in parallel to top-bottom
or difficulty-based reviewing. Reviewers may review only
selected parts of a change, leaving the rest for later, or break
the PR into chunks to narrow their scope and reduce their
cognitive load. However, reviewing chunk by chunk can lead
to a lack of overview; for example, to compensate for this

TABLE III
EXAMPLES OF CODE THAT REVIEWERS PRIORITIZED ACCORDING TO
REVIEWING DIFFICULTY

Hard to review

Large changes

Complex changes

Potential for substantial issues
Easy to review

Not author-written code

Examples

Logic, chained events

Parallel processing

Examples

Auto-generated files, boilerplate code,
binary files

Documentation, tests

Declarative changes, established pat-
terns in the code

Renaming of program entities, small
logic changes, string changes, upgrades,
white space changes, usage of the main
implemented element
Unnecessary removed files,
front-end changes, code that
change in the future

Not production critical
Structurally constant changes

Small changes

visual
will

Changes with low effect on the
final code quality

drawback, the reviewers in P2R2 and P5R2 finalized their
review by linearly reading the entire change to ensure the
change’s consistency. Reviewers employed various units of
chunking (listed in Figure 4). Those reviewing the PR commit-
by-commit stressed the importance of good Git hygiene and
team processes to enable an effective breakdown of the re-
view via commits. Other units, such as functional areas —
e.g., models, migrations, and tests (P8R2), also served as
ways to mentally segment the PR. Tests, in particular, were
a significant unit of chunking. Reviewers reported different
preferences as to when to review tests. P2 and PS5 sometimes
like to start with tests as they document the intention of the
author, similarly to test-driven review [45]. In contrast, P8
preferred reviewing tests last. Re-reviews of the same PR
present a specific scenario where reviewers use comment-
based chunking (P2R1, P2R2, P5R2) to selectively check
how were their previous comments addressed by the author.
Furthermore, we observed reviewers chunking their review
based on files, issues, etc.

. During code inspection reviewers not only
review tests but also actively fest the PR (P6R1, P7R1, P9R1
and P9R2). They check the expected and actual output of
functions in their local terminal, verify whether the system
runs properly in their local environment with the new changes,
perform hands-on testing of the responsiveness of the imple-
mented UI changes, or troubleshoot failed CI/CD checks.

OIEEBED. Reviewers submit their comments, give overall
feedback, and provide a verdict: accept the change, leave
comments, or request further changes. They finalize the review
once they have checked all necessary parts of the PR, reached
a desired level of understanding, provided sufficient feedback,
know that they have no pending notes, and wrapped up any
ongoing discussions.

C. RQ3: Role of information sources, knowledge base, and
mental models

Code review comprehension strategies rely on the infor-
mation sources that include the reviewed code change and

the reviewer’s knowledge to construct a mental model of the
code change. The mental models are then used to update the
knowledge base, compare with other mental models (such
as mental models of expected and ideal solutions), update
them, and consequently evaluate the code change and provide
feedback. In the following section, we provide an overview of
the role of these CRCM components in review comprehension.

1) Information Sources: Reviewers use many information
sources during code review. The ones explicitly mentioned
in the most reviews are the PR title and description (21
reviews out of 25), the issue tracking (11 reviews), and the
PR discussion (10 reviews). Reviewers use (1) information
sources linked within the PR itself (e.g., review size, commit
titles, or CI/CD status), (2) resources to understand the broader
code context of the PR (e.g., code base, tests, or documen-
tation), (3) tools to evaluate and test the change (e.g., local
development environment, specialized software tools), and (4)
external sources not directly connected to the software system
(e.g., language documentation, ChatGPT, blog posts). P7 and
P9 both used specialized code review applications developed
within their companies to fest the system behavior after a patch
is applied and navigate the code base history.

We classified in which review stage reviewers used different
resources. During the context-building phase, which occurs at
the start of the review, most of the information, especially
what is presented and linked within the PR, is gathered.
Interestingly, in 20% of the observed sessions, reviewers
needed to refer to other PRs for more context. While PR
discussion is accessed throughout the review, specific activ-
ities rely on different information sources. For instance, in
the code inspection phase, reviewers use resources that help
them navigate the code base, evaluate whether the PR was
implemented correctly, and test the PR. Reviewers tested the
PR in their local instance of the software system and used
other specialized tools. Before making the final verdict, some
reviewers revisited information sources such as CI/CD status
or to-do notes.

2) Knowledge Base: This component of the model plays
a key role in code review comprehension and in directly
evaluating the PR for potential issues. Letovsky’s model of
code comprehension provides a broad depiction of knowledge
that understanders use: from high-level domain knowledge
and programming plans to the knowledge of programming
language semantics. These fundamental aspects of code com-
prehension enable reviewers to recognize the ‘correct’ im-
plementation of the domain concepts, engineering processes,
programming goals, and code formatting, and to set an expec-
tation for code quality [46]. We observed that reviewers also
employ their knowledge gained through their own experience
as software developers, acquired through their interactions
with code and other developers. This knowledge ranges from
technical experience and familiarity with tools to their strate-
gies to solve programming problems, to knowledge of their
colleagues’ expertise, coding and working style, and learning
needs. Reviewers use this knowledge to provide more focused
feedback: “If you don’t have specific [coding] rules because

you are a junior developer I will help you create them” (P6).

The more familiar a reviewer is with the overall context
of the PR, the fewer resources they need to understand the
PR and related artifacts. This helped enhance their ability to
give constructive feedback for improvements. As mentioned
in the context-building phase, activities such as issue writing
or pre-alignment with the team before the review reduce the
need to build the context from information sources within the
review itself. For instance, P1 quickly navigated code and
provided feedback without stopping to understand or think
further. When asked about it, they explained that it was due
to their role in gatekeeping all code changes in the project
and their extensive knowledge of the code base. They further
clarified: “I have been reviewing code for a while, but there
will be always changes that are completely new. And in those
cases, it will take me longer. It could take even an hour to go
through the test, match it with what I know, and figure it out”.
The knowledge base also contains efficiency knowledge [32],
which refers to the explicit knowledge of common issues
that can be directly applied to identify them. This shows
the fundamental role the knowledge base plays in context
building and improving the efficiency and thoroughness of
code reviews.

Below we report on the mental models reviewers construct
during their review sessions. The knowledge base may already
contain mental models stored in long-term memory that were
constructed prior to the review and that can be used during a
review session: (1) a mental model of the software system—
keeping knowledge of the processes, standards, expectations,
and coding patterns in the code base that allows them to
identify inconsistency with the system architecture, company
and team coding practices; and (2) a mental model of the PR—
reviewers may already have enough context about the PR to
form a preliminary mental model of it.

The mental models of the system and the PR are constructed
and updated through review iterations and stored in long-term
memory for future recall. Thus, there is an ongoing exchange
between the mental models in the knowledge base and the
ones resulting from the comprehension process in the review
session itself.

3) Mental Models: A mental model is the developer’s men-
tal representation of a program or code entity [24]—the PR
in code review context. In Letovsky’s representation [32], the
mental model is constructed in three layers: the specification,
the implementation, and the annotation layer. Here, we present
in detail (1) the three layers of the mental model of the PR
and (2) the use of alternative mental models of the PR as
expectations and ideals that can be used for comprehension as
well as PR evaluation.

Layers of the Mental Model of the PR: An essential part
of constructing the mental model of the PR is establishing
the modification and increment to the software system—what
parts of the system were changed and the size and complexity
of these changes. Reviewers achieve this by using the available
information sources (Section IV-C1) and by understanding the
code itself (e.g., by comparing the removed and added parts of

the code, code tracing, or observing the system’s behavior with
the changes applied). This overview aids them in populating
all three layers of their mental model.

Specification refers to an explicit, complete description
of the program’s goals [32]. Reviewers need to understand
the review goal, i.e., the problem being solved, the reasons
for the change, and the scope of addressed cases. As they
construct the specifications of the mental model of the PR,
they also set explicit expectations for what the implementation
should include, such as which tasks and code units the PR
may contain, thus defining the evaluation criteria for the
implementation. For instance, in the review P5R1, the reviewer
reads the title of a PR that introduces a counter for lazy loads
on a specific object. The reviewer anticipates that the author
probably counts lazy loads per request and logs them, which
aligns with the actual implementation found later in the review.

The implementation layer of the mental model refers to the
actions and data structures in the program [32]. Reviewers
need to understand what has changed in the implementation
and use code tracing [39] to infer the code’s behavior and
its output. They also need to assess the rationale behind
implementation choices and whether the changes are located
correctly in the code. Reviewers in the first review iterations
on the PR might focus on ensuring the overall logic is sound
before they dive into the implementation details. For instance,
P10 explained: “T was thinking if it needs some other mapped
table ... but that doesn’t matter that much as it is a technical
thing and I am now checking mostly whether it makes sense”.

The annotation layer connects specification goals to the
parts of the implementation that fulfill them and which parts
of the implementation fulfill certain specifications [32]. As
suggested, the annotation is done by reviewers by using top-
down and bottom-up processes employed in parallel. When
reviewers build their mental model in the context-building
phase of the review, they can already construct all three layers.
Many information sources allow them to build specifications
and create expectations that are merely confirmed in a top-
down manner during code inspection. The top-down annota-
tion is supported by meaningful traceability across the issue
tracking, PR title, and description, commit messages, file and
variable naming to the implementation layer or by tracing
review comments to their fixes. The bottom-up annotation
starts by understanding code behavior and then assigning
purpose to it. Reviewers commonly comprehended a piece
of the implementation and noted to themselves that it ‘made
sense’ (P2, P3, P7, P8, P9, P10).

These three layers of the mental model create a complete
understanding. Therefore, the review process can be stream-
lined by supplying reviewers early with cues that help them
identify the change’s goals and annotate them to expectations
on how these goals are implemented. The expected version of
the PR might, however, prove to be different from the actual
PR implementation and specification during the review.

The Expected and the Ideal: Reviewers form alternatives,
variants, and extensions of their mental model of the PR in
the form of expected and ideal solutions.

As mentioned in Sections IV-C2 and IV-C3, reviewers
tend to form expectations about the PR, which can reach
the details of a partially formed mental model. We call this
mental model the expected mental model. Such a pre-existing
model only needs to be confirmed when reviewing the PR.
These expectations can stem from various sources, such as
previous review rounds and entered comments, pre-alignment
on solutions with the author, or general software engineering
practices. Adhering to the expectations is desirable in the eyes
of the reviewer (P8: “This is pretty much what I expected
to see. So I'll just approve it”.) and makes the review more
efficient (P10: “We already pre-agreed on solutions. So ... it’s
more like: Does this match my expectation of what would
happen or not?”)

An alternative set of models are the ideal mental models,
representing the optimal, corrected, or improved version of the
PR. P7 remarked: “Now I’m wondering what the ideal solution
is...”. These models are supported by the reviewer’s program-
ming experience, personal preferences, and knowledge of good
engineering practices. Adherence to this imagined optimum is
valued but not necessarily followed. P10 puts it: “In the end I
don’t necessarily agree that this is a better solution, but it still
somehow solves the problem and it doesn’t add a technical
debt or anything like that”.

Both the expected and the ideal mental models offer an
alternative or extension to the mental model of the actual PR.
They may not always be formed or used, but when they are,
they can be a vital tool to perform the review. Overall, mental
models help reviewers set their expectations and evaluate
changed codes against them, thus streamlining the review and
identifying areas of potential improvements.

V. DISCUSSION

In this study, we observed 25 review sessions to analyze
reviewing strategies through the lens of code comprehension.
Extending Letovsky’s model of code comprehension [32], we
developed the Code Review Comprehension Model, detailing
how its components — the information sources, knowledge
base, and mental models interact and shape code review.

A. Findings

Code comprehension is central to code review. Reviewers’
ability to perform code review is dependent on their ability
to understand the code change [52, 2, 19, 33]. Letovsky’s
model [32] offers a valuable framework to explain how com-
prehension shapes review, because reaching an understanding
is among the reviewers’ criteria to finalize their review and ac-
cept changes and drives them to seek information sources and
choose effective reviewing strategies. Using the constructivist
perspective on code comprehension [40], we described how
reviewers update their knowledge of programming practices
and the software system through reviewing code. By viewing
code comprehension as a tool to perform software develop-
ment tasks, such as in the work of Von Mayrhauser and Vans,
we also described how the comprehension process contributes
to evaluating the code changes and providing feedback.

Code review comprehension is scoped. According to
Letovsky [32], full understanding is achieved when all three
layers of a mental model are fully developed. In practice,
full understanding can be reached over the entire PR lifetime,
rather than in a single review session. As predicted by Piaget’s
theory of cognitive development [38], we observed that devel-
opers scope their reviewing and understanding. Full compre-
hension may not always be the goal, especially when reviewers
perform focused, partial, or shallow reviews. Scoping down
the review is a commonly used strategy to deal with review
complexity—one of the main challenges reviewers face [29].

Code review comprehension is incremental, iterative, and
interactive. Reviewers already have mental models of the
software system and may already have one for the PR itself
before starting their review sessions. This knowledge allows
them to be efficient when reviewing the PR. Reviewers’ mental
model of the PR develops over time through review iterations
and is used to update their mental model of the software
system. Importantly, reviewers interact with the author and
other reviewers to reach the desired level of understanding.

Reviewing is strategic. Ad hoc reviewing is considered unsys-
tematic [12, 48]. However, we have observed that reviewers
employ opportunistic strategies, similar to code comprehen-
sion, to reach an understanding of the PR and review the
change. Reviewers combine several activities in a modular way
to form their reviewing strategy. First, they build the context.
Then, they combine code reading, discussion management, and
testing to comprehend and evaluate the change. The scoping
and the modular design of their reviewing strategy allow them
to creatively deal with change complexity.

Ideals and expectations. Reviewers approach the review with
ideas on ideal and optimal solutions and other expectations
towards the PR, informed by common engineering solutions,
good practices, and their knowledge of the PR as well as
the software system. Using the self-discrepancy theory [3],
we could interpret the data effectively, identifying developers
alternative mental models of the ideal and expected code
changes. Meeting these ideals and expectations is seen as
correct and streamlines the review by aiding reviewers to effi-
ciently interpret the code, give feedback, suggest alternatives,
and identify issues.

B. Implications and Recommendations

Based on these findings, we discuss recommendations on
how to support reviewers in effective code review comprehen-
sion and change evaluation.

For Code Review Tools: Our results provide insights for
designing code review tools that better align with reviewers’
natural strategies. First, reviewers scope their review sessions
and prioritize their activities. Tools can support reviewers in
viewing only certain aspects and parts of the PR, as well as
provide ways to let reviewers communicate the scope and main
outcomes of the performed review.

The main strategies for code reading while dealing with
review complexity were chunking and difficulty-based reading.

This finding is an opportunity to investigate how tools can
provide support to identify and visually separate meaningful
code chunks, indicate the change distribution by signifying the
core of the change or more complex passages, and support Git
hygiene. Reviewers often switched contexts to navigate the
code base or test the code change. Both these activities were
substituted in two cases (P7, P9) by an in-house reviewing
application. This behavior shows there is a need to integrate
code base navigation, testing, and reviewing in one environ-
ment together with information sources, such as issue trackers
or online/documentation search.

Reviewers used review comments as an information source
throughout the review, while remaining wary that comments
could be a source of potential bias. Tools should be designed
to allow reviewers to be able to toggle the viewing of existing
review comments. Furthermore, reviewers created many men-
tal models of the code change, their expectations, and ideals.
Tools can support developers to collaboratively construct and
cross-reference multiple mental models [47].

Future research can be designed and carried out to inves-
tigate whether and how AI and LLMs have the potential to
support many of the aforementioned improvements, e.g., by
suggesting effective reviewing strategies, annotating review
comments to related fixes in the implementation, or generating
missing context and documentation [42].

For Practitioners: We observed real-world code reviews
performed by experienced reviewers recommended by others
as great reviewers—their practices can be used to propose
effective reviewing strategies.

For dealing with review complexity, our participants mainly
used three strategies: (1) narrowing down the scope of the
review, (2) using iterations to reach full understanding one
step at a time, and (3) adjusting the reading approach (e.g.,
using chunking). The effectiveness of the first strategy is
reinforced by previous research, which found that focused
reviews enhance reviewers’ ability to detect defects [9]. To
better support the third strategy, good Git hygiene is helpful;
and, if there is a clear core of the change, it can be used as a
starting point for reading.

For improving reviewing efficiency, our participants relied
on a strong knowledge base, by knowing programming prac-
tices, the codebase, and the team. Additionally, they also relied
on the colleagues involved in the review process to com-
plement their expertise and understanding. Finally, creating
expectations about the change under review and having an
alignment with the change author prior to the review session
was used to improve reviewing effectiveness.

For Researchers: Code comprehension is a stepping stone
in performing software development tasks [50]. Letovsky’s
model of code comprehension has proved to be good basis
to start describing how code review is performed in a real
scenario, including the diversity of reviewers’ strategies and
information sources. Using this model can be applied to other
software development tasks to formulate recommendations
towards more human-centric tool design.

Reviewers’ activity has been previously approached with
methods such as experiments [22, 21, 18], interviews [45],
eye-tracking [43], and mining software repositories [9, 36, 21].
However, these methods have limitations in capturing crit-
ical factors such as context, priorities, interactions among
reviewers, and their knowledge of the software system being
reviewed. Usually, eye-tracking studies and experiments use
artificial code changes of a manageable size where linear
reviewing strategies were mostly observed [43, 21]. However,
we have observed that complex reviews in real-world context
require strategies to manage the complexity. These strategies
include narrowing the scope of the review or concluding it
when the reviewers feel their comments no longer provide
significant value, or when they run out of time or energy to
continue the review. This behavior may explain why Fregnan
et al. [21] observed a linear decrease of the number of
comments in each subsequent file of the PR or contextualize
the test-driven review among other reviewing practices [45].

For Educators: Students benefit from being taught (1) ex-
plicit programming strategies and (2) to reflect on their prac-
tices [28]. Our findings can aid students to reflect on their
reviewing strategies. Moreover, students can be instructed on
potential reviewing strategies, decomposing PRs in more re-
viewable units, and finding appropriate information resources.
Students can learn to leverage the experience and expertise
of other developers and create rich expectations for change
evaluation through building rich context and documentation of
PRs and creating alignment with their teammates. Educators
should emphasize the importance of a strong foundation in
programming patterns to enhance the effectiveness and effi-
ciency of code reviews. This is particularly crucial as the use of
Al-generated code becomes more prevalent, requiring students
to develop the skills needed to review such code effectively.

VI. CONCLUSION

In the study presented in this paper, by observing expert
reviewers—recommended as great reviewers by others—while
reviewing real-world code changes and interviewing them
afterwards, we could uncover, for the first time, the oppor-
tunistic strategies they use to form an understanding of the
code change and to evaluate it. Based on these strategies,
we developed a Code Review Comprehension Model and put
forward recommendations on how to improve code review
tools as well as on topics to conduct further research.

ACKNOWLEDGMENT

Alberto Bacchelli and Pooja Rani gratefully acknowl-
edge the support of the Swiss National Science Foun-
dation through the SNF Projects 200021_197227 and
200021M_205146. Pavlina Wurzel Gongalves gratefully ac-
knowledges the support of CHOOSE, the Swiss Group
for Original and Outside-the-box Software Engineering
(https://choose.swissinformatics.org/).

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Mauricio Aniche, Christoph Treude, and Andy Zaidman.
How developers engineer test cases: An observational
study. IEEE Transactions on Software Engineering, 48
(12):4925-4946, 2021.

Alberto Bacchelli and Christian Bird. Expectations, out-
comes, and challenges of modern code review. In 2013
35th International Conference on Software Engineering
(ICSE), pages 712-721. IEEE, 2013.

Waclaw Bak. Self-standards and self-discrepancies. a
structural model of self-knowledge. Current Psychology,
33(2):155-173, 2014.

Sebastian Baltes and Paul Ralph. Sampling in software
engineering research: A critical review and guidelines.
Empirical Software Engineering, 27(4):94, 2022.
Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schnei-
der. Factors influencing code review processes in in-
dustry. In Proceedings of the 2016 24th acm sigsoft
international symposium on foundations of software en-
gineering, pages 85-96, 2016.

Tobias Baum, Kurt Schneider, and Alberto Bacchelli.
On the optimal order of reading source code changes
for review. In 2017 IEEE international conference
on software maintenance and evolution (ICSME), pages
329-340. IEEE, 2017.

Deborah A Boehm-Davis, Robert W Holt, and Alan C
Schultz. The role of program structure in software
maintenance. International Journal of Man-Machine
Studies, 36(1):21-63, 1992.

Virginia Braun and Victoria Clarke. Using thematic anal-
ysis in psychology. Qualitative research in psychology,
3(2):77-101, 2006.

Larissa Braz, Christian Aeberhard, Giil Calikli, and Al-
berto Bacchelli. Less is more: supporting developers in
vulnerability detection during code review. In Proceed-
ings of the 44th International Conference on Software
Engineering, pages 1317-1329, 2022.

Ruven Brooks. Towards a theory of the cognitive pro-
cesses in computer programming. International Journal
of Man-Machine Studies, 9(6):737-751, 1977.

Mauro Cherubini, Gina Venolia, Rob DeLine, and Amy J
Ko. Let’s go to the whiteboard: how and why software
developers use drawings. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 557-566, 2007.

Marcus Ciolkowski, Oliver Laitenberger, and Stefan
Biffl. Software reviews, the state of the practice. IEEE
software, 20(6):46-51, 2003.

Thomas A Corbi. Program understanding: Challenge for
the 1990s. IBM Systems Journal, 28(2):294-306, 1989.
John W Creswell. Educational research: Planning,
conducting, and evaluating quantitative and qualitative
research. pearson, 2015.

John W Creswell and Dana L Miller. Determining
validity in qualitative inquiry. Theory into practice, 39

[16]

[21]

[22]

[24]

[25]

(3):124-130, 2000.

Nicole Davila and Ingrid Nunes. A systematic literature
review and taxonomy of modern code review. Journal of
Systems and Software, 177:110951, 2021.

Gordon Diaper. The hawthorne effect: A fresh examina-
tion. Educational studies, 16(3):261-267, 1990.
Alastair Dunsmore, Marc Roper, and Murray Wood. The
role of comprehension in software inspection. Journal of
Systems and Software, 52(2-3):121-129, 2000.

Michael E Fagan. Design and code inspections to reduce
errors in program development. IBM Systems Journal, 38
(2.3):258-287, 1999.

Benjamin Floyd, Tyler Santander, and Westley Weimer.
Decoding the representation of code in the brain: An
fMRI study of code review and expertise. In 2017
IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pages 175-186. IEEE, 2017.
Enrico Fregnan, Larissa Braz, Marco D’Ambros, Giil
Calikli, and Alberto Bacchelli. First come first served:
the impact of file position on code review. In Proceedings
of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering, pages 483-494, 2022.

Pavlina Wurzel Gongalves, Enrico Fregnan, Tobias
Baum, Kurt Schneider, and Alberto Bacchelli. Do
explicit review strategies improve code review perfor-
mance? towards understanding the role of cognitive load.
Empirical Software Engineering, 27(4):99, 2022.
Georgios Gousios, Martin Pinzger, and Arie van Deursen.
An exploratory study of the pull-based software devel-
opment model. In Proceedings of the 36th international
conference on software engineering, pages 345-355,
2014.

Ava Heinonen, Bettina Lehteld, Arto Hellas, and Fabian
Fagerholm. Synthesizing research on programmers’ men-
tal models of programs, tasks and concepts—a systematic
literature review. Information and Software Technology,
page 107300, 2023.

Monique M Hennink, Bonnie N Kaiser, and Vincent C
Marconi. Code saturation versus meaning saturation:
how many interviews are enough? Qualitative health
research, 27(4):591-608, 2017.

Nick Hodges. Six rules for good git hygiene,
2019. URL https://betterprogramming.pub/
six-rules-for-good- git-hygiene-5006cf9e9e2.

Robin Jeffries. A comparison of the debugging behavior
of expert and novice programmers. In Proceedings of
AERA annual meeting, volume 10, pages 1-7, 1982.
Amy J Ko, Thomas D LaToza, Stephen Hull, Ellen A Ko,
William Kwok, Jane Quichocho, Harshitha Akkaraju, and
Rishin Pandit. Teaching explicit programming strategies
to adolescents. In Proceedings of the 50th ACM technical
symposium on computer science education, pages 469—
475, 2019.

Oleksii Kononenko, Olga Baysal, and Michael W God-
frey. Code review quality: How developers see it. In

https://betterprogramming.pub/six-rules-for-good-git-hygiene-5006cf9e9e2
https://betterprogramming.pub/six-rules-for-good-git-hygiene-5006cf9e9e2

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Proceedings of the 38th international conference on
software engineering, pages 1028-1038, 2016.

Thomas D LaToza, Maryam Arab, Dastyni Loksa, and
Amy J Ko. Explicit programming strategies. Empirical
Software Engineering, 25(4):2416-2449, 2020.

Joseph Lawrance, Christopher Bogart, Margaret Burnett,
Rachel Bellamy, Kyle Rector, and Scott D Fleming. How
programmers debug, revisited: An information foraging
theory perspective. [EEE Transactions on Software
Engineering, 39(2):197-215, 2010.

Stanley Letovsky. Cognitive processes in program com-
prehension. Journal of Systems and software, 7(4):325—
339, 1987.

Laura MacLeod, Michaela Greiler, Margaret-Anne
Storey, Christian Bird, and Jacek Czerwonka. Code
reviewing in the trenches: Challenges and best practices.
IEEE Software, 35(4):34—42, 2017.

Justin Middleton and Kathryn T Stolee. Understanding
similar code through comparative comprehension. In
2022 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 1-11. IEEE, 2022.
Andy Oram and Greg Wilson. Making software: What
really works, and why we believe it. > O’Reilly Media,
Inc.”, 2010.

Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel
Bruntink, and Alberto Bacchelli. Information needs in
contemporary code review. Proceedings of the ACM on
Human-Computer Interaction, 2(CSCW):1-27, 2018.
Nancy Pennington. Stimulus structures and mental
representations in expert comprehension of computer
programs. Cognitive psychology, 19(3):295-341, 1987.
Jean Piaget. Cognitive development in children: Piaget
development and learning. Journal, of Research in
Science Teaching, 2:176-186, 1964.

Ruixiang Qi and Davide Fossati. Unlimited trace tu-
tor: Learning code tracing with automatically generated
programs. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, pages 427—
433, 2020.

Viclav Rajlich and Norman Wilde. The role of concepts
in program comprehension. In Proceedings 10th Inter-
national Workshop on Program Comprehension, pages
271-278. 1EEE, 2002.

Caitlin Sadowski, Emma Soderberg, Luke Church,
Michal Sipko, and Alberto Bacchelli. Modern code
review: a case study at Google. In Proceedings of the
40th international conference on software engineering:
Software engineering in practice, pages 181-190, 2018.
Md Nazmus Sakib, Md Athikul Islam, and Md Mashrur
Arifin. Automatic pull request description generation
using llms: A TS5 model approach. arXiv preprint
arXiv:2408.00921, 2024.

Bonita Sharif, Michael Falcone, and Jonathan I Maletic.
An eye-tracking study on the role of scan time in finding
source code defects. In Proceedings of the symposium on
eye tracking research and applications, pages 381-384,

[44]

[45]

2012.

Elliot Soloway and Kate Ehrlich. Empirical studies of
programming knowledge. IEEE Transactions on software
engineering, (5):595-609, 1984.

Davide Spadini, Fabio Palomba, Tobias Baum, Stefan
Hanenberg, Magiel Bruntink, and Alberto Bacchelli.
Test-driven code review: an empirical study. In 2019
IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 1061-1072. IEEE, 2019.
Diomidis Spinellis, Panos Louridas, Maria Kechagia, and
Tushar Sharma. Broken windows: Exploring the applica-
bility of a controversial theory on code quality. In Pro-
ceedings of 40th International Conference on Software
Maintenance and Evolution, ICSME 24, New York, NY,
USA, 2024. IEEE. doi: 10.1145/3643665.3648048.
M-AD Storey, F David Fracchia, and Hausi A Miiller.
Cognitive design elements to support the construction of
a mental model during software exploration. Journal of
Systems and Software, 44(3):171-185, 1999.

Hidetake Uwano, Masahide Nakamura, Akito Monden,
and Ken-ichi Matsumoto. Analyzing individual per-
formance of source code review using reviewers’ eye
movement. In Proceedings of the 2006 symposium on
Eye tracking research & applications, pages 133-140,
2006.

Anneliese Von Mayrhauser and A Marie Vans. From
program comprehension to tool requirements for an in-
dustrial environment. In [1993] IEEE Second Workshop
on Program Comprehension, pages 78-86. IEEE, 1993.
Anneliese von Mayrhauser and A. Marie Vans. Program
comprehension during software maintenance and evolu-
tion. Computer, 28(8):44-55, aug 1995. ISSN 0018-
9162. doi: 10.1109/2.402076. URL https://doi.org/10.
1109/2.402076.

T Winograd and DD Woods. The challenge of human-
centered design. Human-centered systems: information,
interactivity, and intelligence, 1997.

Pavlina Wurzel Gongalves, Giil Calikli, Alexander Sere-
brenik, and Alberto Bacchelli. Competencies for code
review. Proceedings of the ACM on Human-Computer
Interaction, T(CSCW1):1-33, 2023.

Pavlina Wurzel Goncalves, Pooja Rani, Diomidis Spinel-
lis, Margareth Storey-Anne, and Alberto Bacchelli.
Replication package for ‘code review comprehension:
Reviewing strategies seen through code comprehen-
sion theories’, 2025. URL https://zenodo.org/records/
14748996.

https://doi.org/10.1109/2.402076
https://doi.org/10.1109/2.402076
https://zenodo.org/records/14748996
https://zenodo.org/records/14748996

	Introduction
	Background
	Methodology
	Research Questions
	Data Collection
	Data Analysis
	Ethics and Data Handling
	Limitations

	Results
	RQ1: Scoping Code Review Comprehension
	RQ2: Strategies Reviewers Use To Perform Code Review
	RQ3: Role of information sources, knowledge base, and mental models
	Information Sources
	Knowledge Base
	Mental Models

	Discussion
	Findings
	Implications and Recommendations

	Conclusion

